【Nature高分思路速递】 物理驱动的机器学习

作为常在《Nature》出没的方向,物理信息机器学习PIML今年依然势头不减,只综述就发表了许多,比如布朗大学GE Karniadakis院士的那篇。

从这些成果来看,PIML如今已从概念验证逐渐走向广泛应用,新的应用场景正不断涌现。这也意味着有大量可探索的空间,更容易做出开创性的工作。

为助力各位快速找到突破口,我建议:如果想快速发文,试试将现有的PIML方法应用到一个新的、还没人用PIML解决过的具体工程问题;如果想发高区,那就在效率、稳健性、泛化能力以及在真实复杂场景下的表现上下功夫。

当然,大家最终是要根据自身情况才能做决定,我这边也准备了12篇PIML前沿论文作为参考,代码已附,希望各位看完可以有所收获。

全部论文+开源代码需要的同学看文末

Generative learning for forecasting the dynamics of high-dimensional complex systems

**方法:**论文提出 G-LED 框架,以物理信息机器学习为核心:将高维数据下采样到低维流形,用多头自回归注意力模型演化其动力学,再通过融入物理信息的贝叶斯扩散模型将低维流形映射回高维空间,实现高维复杂系统模拟加速与准确预测。

创新点:

  • 提出G-LED框架,结合生成学习与自回归注意力机制,可捕捉湍流等复杂多尺度动力学。

  • 用非可训练下采样编码器,且将物理信息融入解码器,提升预测物理一致性。

  • 以多头自回归注意力模型替代传统模型,优化效率,在多类测试中实现降本与精准预测。

Physics-informed machine learning

**方法:**论文围绕物理信息机器学习展开,核心方法是将物理定律与机器学习融合:通过观测偏差、归纳偏差、学习偏差三种路径嵌入物理信息,还结合混合方法,依托核方法、经典数值算法建立理论联系,以解决正逆问题、高维系统求解等问题。

创新点:

  • 通过数据、专用网络架构、物理正则损失(如PINNs嵌PDE)三种路径,将物理信息嵌入机器学习。

  • 提出混合方法,如结合DeepONets与PINNs、融合高低保真数据,还将神经网络嵌入传统数值方法。

  • 建立与核方法、经典数值算法的理论联系,适配小数据、噪声数据及高维系统。

Kolmogorov n-Widths for Multitask Physics-Informed Machine Learning (PIML) Methods: Towards Robust Metrics

**方法:**论文针对多任务PIML缺客观指标的问题,以Kolmogorov n 宽度为核心方法:先训练 MH-PINNs、PI-DONs 等 PIML 模型得到基函数,再通过双优化算该宽度,还将其作为正则项融入三优化训练,缓解过拟合、提升泛化性,最终在 1D 泊松方程等任务上验证其能有效对比 PIML 架构性能,避免采样误差误导。

创新点:

  • 用Kolmogorov n宽度作多任务PIML的评估指标,通过双优化算宽度,量化模型解空间近似能力,避免采样误差误导。

  • 将Kolmogorov n宽度作为正则项,融入三优化训练,缓解PIML模型过拟合,提升泛化性。

  • 在1D泊松方程等任务验证该宽度能对比PIML架构、激活函数性能,明确网络参数对泛化的影响。

Separable Physics-Informed DeepONet: Breaking the Curse of Dimensionality in Physics-Informed Machine Learning

**方法:**论文针对传统PINNs求解含间断/多尺度PDE的精度与稳定性问题,提出改进的物理信息机器学习方法:将熵守恒、TVD等物理准则融入模型,结合自适应采样与多尺度网络,保留自动微分算PDE残差、融数据与物理约束优化的核心范式,在高超声速流动等场景验证其提升物理一致性与预测性能的效果。

创新点:

  • 提出Sep-PI-DeepONet,拆分PI-DeepONet为独立子网络实现坐标分解,将主干网络传播次数从降为,突破高维PDE维度灾难。

  • 用前向模式AD算PDE梯度项,雅可比矩阵规模大幅缩减,计算成本随离散密度与维度线性增长。

  • 在多类基准测试中,Sep-PI-DeepONet精度相当传统PI-DeepONet,训练时间降两个数量级,还能处理高维PDE。

关注下方《学姐带你玩AI》🚀🚀🚀

回复"222"获取全部方案+开源代码

码字不易,欢迎大家点赞评论收藏

相关推荐
song150265372982 分钟前
如何选择适合的AI视觉检测设备?
人工智能
FE_C_P小麦2 分钟前
AI Prompt 提示词模板【转载】
人工智能
桂花饼8 分钟前
量化双雄争霸:九坤 IQuest-Coder-V1 的技术突破
人工智能·aigc·nano banana 2·openai兼容接口·claude opus 4.5·sora2 pro
undsky_13 分钟前
【n8n教程】:RSS Feed Trigger节点,玩转RSS订阅自动化
人工智能·ai·aigc·ai编程
摘星编程17 分钟前
【RAG+LLM实战指南】如何用检索增强生成破解AI幻觉难题?
android·人工智能
人工智能培训19 分钟前
什么是马尔可夫决策过程(MDP)?马尔可夫性的核心含义是什么?
人工智能·深度学习·机器学习·cnn·智能体·马尔可夫决策
数据饕餮21 分钟前
提示词工程实训营08- 写作助手:文章、报告、创意文案——从“写作困难户“到“高产作家的蜕变秘籍
人工智能·大模型·提示词工程
wenzhangli722 分钟前
告别手撸架构图!AI+Ooder实现漂亮架构+动态交互+全栈可视化实战指南
人工智能·架构·交互
线束线缆组件品替网23 分钟前
Amphenol LTW 防水线缆 IP67/IP68 结构解析
运维·网络·人工智能·汽车·硬件工程·材料工程
码农水水36 分钟前
大疆Java面试被问:TCC事务的悬挂、空回滚问题解决方案
java·开发语言·人工智能·面试·职场和发展·单元测试·php