搭建spark yarn 模式的集群

搭建Spark YARN模式集群步骤

  1. 环境准备

系统:采用Linux系统(如Ubuntu、CentOS ),借助ntp实现节点间时间同步,关闭防火墙及SELinux。

Java:安装JDK 8及以上版本,配置JAVA_HOME环境变量。

Hadoop:部署包含HDFS和YARN的Hadoop集群,配置HADOOP_HOME和PATH环境变量。

  1. 安装Spark

下载:从Spark官网下载适配Hadoop版本的二进制包,解压至各节点。

环境变量配置:在~/.bashrc中添加 export SPARK_HOME=/path/to/spark 和 export PATH=PATH:SPARK_HOME/bin:$SPARK_HOME/sbin ,并执行 source ~/.bashrc 刷新配置。

  1. 配置Spark on YARN

文件修改:在 $SPARK_HOME/conf 目录下,将spark - env.sh.template复制为spark - env.sh ,slaves.template复制为slaves 。在spark - env.sh中添加 export HADOOP_CONF_DIR=/path/to/hadoop/conf 和 export YARN_CONF_DIR=/path/to/hadoop/conf (指向Hadoop配置目录);在slaves文件中按每行一个的格式列出所有Worker节点的主机名或IP 。

配置分发:利用scp或rsync等工具,将Spark目录及配置文件复制到所有节点。

  1. 启动集群

启动Hadoop:依次执行 start - dfs.sh 启动HDFS , start - yarn.sh 启动YARN。

启动Spark Worker:在Master节点执行 start - slaves.sh ,通过访问YARN界面(默认端口8088 )查看节点状态。

  1. 验证任务

执行 spark - submit --master yarn --class org.apache.spark.examples.SparkPi $SPARK_HOME/examples/jars/spark - examples*.jar 10 提交示例任务测试,可通过YARN界面或相关命令查看任务日志。

注意事项

通过 --executor - memory 和 --executor - cores 参数调整任务资源;若需实现高可用(HA) ,需配置ZooKeeper和多Master节点。

相关推荐
最初的↘那颗心1 分钟前
Flink Stream API 源码走读 - window 和 sum
大数据·hadoop·flink·源码·实时计算·窗口函数
Yusei_05232 小时前
迅速掌握Git通用指令
大数据·git·elasticsearch
一只栖枝8 小时前
华为 HCIE 大数据认证中 Linux 命令行的运用及价值
大数据·linux·运维·华为·华为认证·hcie·it
喂完待续12 小时前
Apache Hudi:数据湖的实时革命
大数据·数据仓库·分布式·架构·apache·数据库架构
青云交12 小时前
Java 大视界 -- 基于 Java 的大数据可视化在城市交通拥堵治理与出行效率提升中的应用(398)
java·大数据·flink·大数据可视化·拥堵预测·城市交通治理·实时热力图
还是大剑师兰特18 小时前
Flink面试题及详细答案100道(1-20)- 基础概念与架构
大数据·flink·大剑师·flink面试题
189228048611 天前
NY243NY253美光固态闪存NY257NY260
大数据·网络·人工智能·缓存
武子康1 天前
大数据-70 Kafka 日志清理:删除、压缩及混合模式最佳实践
大数据·后端·kafka
CCF_NOI.1 天前
解锁聚变密码:从微观世界到能源新未来
大数据·人工智能·计算机·聚变
杨荧1 天前
基于Python的电影评论数据分析系统 Python+Django+Vue.js
大数据·前端·vue.js·python