第99期 dropout防止过拟合

import torch

from torch import nn

from d2l import torch as d2l

def dropout_layer(X,dropout):

assert 0<=dropout<=1

if dropout==1:

return torch.zeros_like(X)

if dropout==0:

return X

#mask=(torch.randn(X.shape)>dropout).float() 沐神手快敲错了

#rand和randn区别:https://blog.csdn.net/wangwangstone/article/details/89815661

mask = (torch.rand(X.shape) > dropout).float()

这里其实就相当于,在里面随机生成了一个矩阵,值为0-1的均匀分布,取里面大于dropout的值为1,在return中相乘就相当于保留下来,另外

dropout概率的那部分会因为不满足">"号取到false,也就是0,在return中相乘会直接舍去当时的值。

return mask*X/(1.0-dropout)

'''

便于你理解dropout里面那段函数

A=torch.tensor([[1,2,3,4],[5,6,7,8],[9,10,11,12]])

print(A)

B=torch.rand(A.shape)

print(B)

mask=(torch.rand(A.shape)>0.2).float()

print(mask)

'''

测试dropout_layer 函数

def test_dropout_layer():

X=torch.arange(16,dtype=torch.float32).reshape((2,8))

print(X)

print(dropout_layer(X,0))

print(dropout_layer(X, 0.5))

print(dropout_layer(X, 1))

test_dropout_layer()

num_inputs,num_outputs,num_hiddens1,num_hiddens2=784,10,256,256

dropout1,dropout2=0.2,0.5

class Net(nn.Module):

def init(self,num_inputs,num_outputs,num_hiddens1,num_hiddens2,is_training=True):

super(Net,self).init()

self.num_inputs=num_inputs

self.training=is_training

self.lin1=nn.Linear(num_inputs,num_hiddens1)

self.lin2=nn.Linear(num_hiddens1,num_hiddens2)

self.lin3=nn.Linear(num_hiddens2,num_outputs)

self.relu=nn.ReLU()

def forward(self,X):

H1=self.relu(self.lin1(X.reshape((-1,self.num_inputs))))

if self.training==True:

H1=dropout_layer(H1,dropout1)

H2=self.relu(self.lin2(H1))

if self.training==True:

H2=dropout_layer(H2,dropout2)

out=self.lin3(H2)

return out

net=Net(num_inputs,num_outputs,num_hiddens1,num_hiddens2)

num_epochs,lr,batch_size=10,0.5,256

loss = nn.CrossEntropyLoss()

train_iter,test_iter=d2l.load_data_fashion_mnist(batch_size)

trainer=torch.optim.SGD(net.parameters(),lr=lr)

d2l.train_ch3(net,train_iter,test_iter,loss,num_epochs,trainer)

d2l.plt.show()

简洁实现

net=nn.Sequential(nn.Flatten(),nn.Linear(784,256),nn.ReLU(),nn.Dropout(dropout1),nn.Linear(256,256),nn.ReLU(),nn.Dropout(dropout2),nn.Linear(256,10))

def init_weights(m):

if type(m)==nn.Linear:

nn.init.normal_(m.weight,std=0.01)

net.apply(init_weights)

num_epochs,lr,batch_size=10,0.5,256

loss = nn.CrossEntropyLoss()

train_iter,test_iter=d2l.load_data_fashion_mnist(batch_size)

trainer=torch.optim.SGD(net.parameters(),lr=lr)

d2l.train_ch3(net,train_iter,test_iter,loss,num_epochs,trainer)

d2l.plt.show()

相关推荐
冬天给予的预感2 分钟前
DAY 54 Inception网络及其思考
网络·python·深度学习
钢铁男儿7 分钟前
PyQt5高级界而控件(容器:装载更多的控件QDockWidget)
数据库·python·qt
董厂长4 小时前
langchain :记忆组件混淆概念澄清 & 创建Conversational ReAct后显示指定 记忆组件
人工智能·深度学习·langchain·llm
亿牛云爬虫专家4 小时前
Kubernetes下的分布式采集系统设计与实战:趋势监测失效引发的架构进化
分布式·python·架构·kubernetes·爬虫代理·监测·采集
九年义务漏网鲨鱼7 小时前
【大模型学习 | MINIGPT-4原理】
人工智能·深度学习·学习·语言模型·多模态
蹦蹦跳跳真可爱5898 小时前
Python----OpenCV(图像増强——高通滤波(索贝尔算子、沙尔算子、拉普拉斯算子),图像浮雕与特效处理)
人工智能·python·opencv·计算机视觉
nananaij8 小时前
【Python进阶篇 面向对象程序设计(3) 继承】
开发语言·python·神经网络·pycharm
雷羿 LexChien8 小时前
从 Prompt 管理到人格稳定:探索 Cursor AI 编辑器如何赋能 Prompt 工程与人格风格设计(上)
人工智能·python·llm·编辑器·prompt
敲键盘的小夜猫9 小时前
LLM复杂记忆存储-多会话隔离案例实战
人工智能·python·langchain
高压锅_12209 小时前
Django Channels WebSocket实时通信实战:从聊天功能到消息推送
python·websocket·django