RDD有哪几种创建方式

RDD 的创建方式

在 Spark 中,RDD 可以通过多种方式进行创建。以下是主要的两种方法及其详细说明:

1. 从集合中创建 RDD

这是最简单的方式之一,适用于本地数据结构(如数组或列表)转化为分布式数据集的情况。parallelize()makeRDD() 是两个常用的方法来实现这一点。

  • 使用 parallelize() 方法可以将一个 Scala 集合对象转换为 RDD2

    复制代码

    scala

    val conf = new SparkConf().setAppName("Example").setMaster("local") val sc = new SparkContext(conf) // 将本地数组转为 RDD val rdd: RDD[Int] = sc.parallelize(Array(1, 2, 3, 4))

  • 同样地,也可以使用 makeRDD() 来完成相同的功能1:

    复制代码

    scala

    val rdd1: RDD[Int] = sc.makeRDD(Array(1, 2, 3, 4, 5, 6))

这两种方法本质上都是把内存中的数据分布到集群的不同节点上去形成一个 RDD 实例2

2. 从外部存储系统加载数据创建 RDD

除了能够直接由程序内部的数据构建外,RDD 还可以从诸如 HDFS,S3,Cassandra,HBase 等外部存储媒介里获取原始资料进而初始化自己.

  • 当需要处理大规模存在于远程文件服务器上的文本文档时,则可通过调用 textFile() 函数指定路径参数达成目标2 :

    复制代码

    scala

    val hdfsRdd = sc.textFile("hdfs://localhost:9000/data/words.txt")

此命令会读取位于给定 URI 下的所有文件并将每一行作为单独元素放入最终得到的新建实例之中.

综上所述,无论是针对小型测试用途还是生产环境下涉及庞大数据量的实际运用场景,Spark 均提供了灵活简便的方式来生成所需的 RDD 结构形式以便后续进一步分析挖掘价值所在.

相关推荐
武子康11 小时前
大数据-98 Spark 从 DStream 到 Structured Streaming:Spark 实时计算的演进
大数据·后端·spark
武子康19 小时前
大数据-100 Spark DStream 转换操作全面总结:map、reduceByKey 到 transform 的实战案例
大数据·后端·spark
武子康2 天前
大数据-99 Spark Streaming 数据源全面总结:原理、应用 文件流、Socket、RDD队列流
大数据·后端·spark
计算机毕业设计木哥3 天前
计算机毕设选题推荐:基于Java+SpringBoot物品租赁管理系统【源码+文档+调试】
java·vue.js·spring boot·mysql·spark·毕业设计·课程设计
IT毕设梦工厂3 天前
大数据毕业设计选题推荐-基于大数据的客户购物订单数据分析与可视化系统-Hadoop-Spark-数据可视化-BigData
大数据·hadoop·数据分析·spark·毕业设计·源码·bigdata
大数据CLUB3 天前
基于spark的澳洲光伏发电站选址预测
大数据·hadoop·分布式·数据分析·spark·数据开发
计算机编程小央姐3 天前
跟上大数据时代步伐:食物营养数据可视化分析系统技术前沿解析
大数据·hadoop·信息可视化·spark·django·课程设计·食物
孟意昶3 天前
Spark专题-第一部分:Spark 核心概述(2)-Spark 应用核心组件剖析
大数据·spark·big data
智海观潮4 天前
Spark SQL | 目前Spark社区最活跃的组件之一
大数据·spark
盛源_014 天前
hadoop的api操作对象存储
hdfs·spark