MapReduce 的工作原理

MapReduce 是一种分布式计算框架,用于处理和生成大规模数据集。它将任务分为两个主要阶段:Map 阶段和 Reduce 阶段。开发人员可以使用存储在 HDFS 中的数据,编写 Hadoop 的 MapReduce 任务,从而实现并行处理1。

MapReduce 的工作原理

Map 阶段: 输入:Map 阶段接收输入数据,通常是键值对(key-value pairs)。 处理:Map 函数对输入数据进行处理,生成中间结果。 输出:Map 函数的输出是新的键值对,这些中间结果将传递给 Reduce 阶段。

Shuffle 阶段: 分区:将 Map 阶段的输出数据进行分区,每个分区对应一个 Reduce 任务。 排序:对每个分区内的数据按键进行排序。 合并:将相同键的值合并在一起,准备传递给 Reduce 阶段。

Reduce 阶段: 输入:Reduce 阶段接收 Shuffle 阶段处理后的数据。 处理:Reduce 函数对相同键的值进行合并计算,生成最终结果。 输出:Reduce 函数的输出是最终结果,通常存储在 HDFS 中。

相关推荐
TM1Club2 小时前
AI驱动的预测:新的竞争优势
大数据·人工智能·经验分享·金融·数据分析·自动化
zhang133830890752 小时前
CG-09H 超声波风速风向传感器 加热型 ABS材质 重量轻 没有机械部件
大数据·运维·网络·人工智能·自动化
电商API_180079052473 小时前
第三方淘宝商品详情 API 全维度调用指南:从技术对接到生产落地
java·大数据·前端·数据库·人工智能·网络爬虫
龙山云仓4 小时前
No140:AI世间故事-对话康德——先验哲学与AI理性:范畴、道德律与自主性
大数据·人工智能·深度学习·机器学习·全文检索·lucene
躺柒5 小时前
读数字时代的网络风险管理:策略、计划与执行04风险指引体系
大数据·网络·信息安全·数字化·网络管理·网络风险管理
独自归家的兔6 小时前
从 “局部凑活“ 到 “全局最优“:AI 规划能力的技术突破与产业落地实践
大数据·人工智能
海域云-罗鹏6 小时前
国内公司与英国总部数据中心/ERP系统互连,SD-WAN专线实操指南
大数据·数据库·人工智能
策知道7 小时前
依托政府工作报告准备省考【经验贴】
大数据·数据库·人工智能·搜索引擎·政务
Henry-SAP8 小时前
SAP(ERP) 组织结构业务视角解析
大数据·人工智能·sap·erp·sap pp
TracyCoder1239 小时前
ElasticSearch内存管理与操作系统(一):内存分配底层原理
大数据·elasticsearch·搜索引擎