spark基本介绍

Spark是一个快速、通用、可扩展的大数据处理引擎,以下是其基本介绍:

发展历程

  • 2009年,诞生于加州大学伯克利分校的AMPLab。

  • 2010年,开源并成为Apache的孵化项目。

  • 2014年,正式成为Apache顶级项目。

特点

  • 速度快:采用内存计算,数据可缓存在内存中,避免频繁读写磁盘,大大提高处理速度。

  • 易用性:支持多种编程语言,如Java、Scala、Python和R等,提供丰富的API,方便开发人员进行数据处理和分析。

  • 通用性:涵盖批处理、交互式查询、实时流处理、机器学习、图计算等多种计算模式,能满足不同应用场景的需求。

  • 可扩展性:基于分布式架构,能方便地通过添加节点来扩展集群规模,处理海量数据。

  • 高容错性:通过RDD(弹性分布式数据集)的血统机制,能自动恢复丢失的数据分区,保证数据处理的可靠性。

核心组件

  • Spark Core:提供了Spark的基本功能,包括任务调度、内存管理、错误恢复等,是其他组件的基础。

  • Spark SQL:用于处理结构化数据,支持SQL查询和DataFrame API,能方便地与各种数据源进行交互。

  • Spark Streaming:支持实时流数据处理,将流数据分割成小的批次进行处理,实现准实时的数据分析。

  • MLlib:机器学习库,提供了一系列的机器学习算法和工具,如分类、回归、聚类等,方便用户进行数据挖掘和分析。

  • GraphX:用于图计算的组件,提供了图数据的表示和操作方法,能处理复杂的图结构数据。

应用场景

  • 数据处理与分析:对大规模数据进行清洗、转换、统计分析等操作。

  • 实时流计算:处理实时产生的流数据,如网站日志、传感器数据等,实现实时监控和预警。

  • 机器学习:构建和训练机器学习模型,进行数据预测和分类等任务。

  • 图计算:处理社交网络、知识图谱等图结构数据,进行节点关系分析、路径查找等操作。

相关推荐
qqxhb12 小时前
系统架构设计师备考第68天——大数据处理架构
大数据·hadoop·flink·spark·系统架构·lambda·kappa
yumgpkpm18 小时前
Hadoop大数据平台在中国AI时代的后续发展趋势研究CMP(类Cloudera CDP 7.3 404版华为鲲鹏Kunpeng)
大数据·hive·hadoop·python·zookeeper·oracle·cloudera
凯子坚持 c1 天前
基于VMware与CentOS 7的Hadoop集群部署全景指南
linux·hadoop·centos
大数据CLUB2 天前
酒店预订数据分析及预测可视化
大数据·hadoop·分布式·数据挖掘·数据分析·spark·mapreduce
TTBIGDATA2 天前
【Ambari开启Kerberos】Step1-KDC服务初始化安装-适合Ubuntu
运维·数据仓库·hadoop·ubuntu·ambari·hdp·bigtop
TTBIGDATA2 天前
【Ambari开启Kerberos】KERBEROS SERVICE CHECK 报错
大数据·运维·hadoop·ambari·cdh·bigtop·ttbigdata
码·蚁3 天前
SpringMVC
数据仓库·hive·hadoop
杂家4 天前
Hadoop完全分布式部署(超详细)
大数据·hadoop·分布式
BD_Marathon4 天前
【Hadoop】hadoop3.3.1完全分布式配置
大数据·hadoop·分布式
Q26433650234 天前
【有源码】基于Hadoop+Spark的起点小说网大数据可视化分析系统-基于Python大数据生态的网络文学数据挖掘与可视化系统
大数据·hadoop·python·信息可视化·数据分析·spark·毕业设计