RDD的自定义分区器

一、先创一个order.csv文件

内容如下:

复制代码
1,99,备注1
222,92,备注2
1101,99,备注1
232,392,备注2
2110,99,备注1

二、建一个scala的object类,代码如下

Scala 复制代码
import org.apache.spark.{Partitioner, SparkConf, SparkContext}

// 创建一个类继承Partitioner
class OrderPartitioner extends Partitioner {

  override def numPartitions: Int = 2 // 两个分区,编号就是: 0, 1

  // key - value
  override def getPartition(key: Any): Int = {
// 如果key在2001和2003之间,就返回 0
// 否则,返回 1
val keyInt = key.asInstanceOf[Int]
    if (keyInt > 2000 && keyInt < 2003) {
      0
    } else {
      1
    }
  }
}

// case class
case class Order(id: Int, price: Double, category: String)

object PartitionOrder {
  def main(args: Array[String]): Unit = {
    // 创建SparkContext
    val conf = new SparkConf().setAppName("Partition").setMaster("local[*]")
    val sc = new SparkContext(conf)

    // 初始数据
    val rdd = sc.textFile("data/order.csv")

    val rdd1 = rdd.map(line => {
      val fields = line.split(",")
      (fields(0).toInt, Order(fields(0).toInt, fields(1).toDouble, fields(2)))
    })


    // 使用自定义分区器
    val rdd2 = rdd1.partitionBy(new OrderPartitioner)

    rdd2.map(x => x._2).saveAsTextFile("output18")

    val regionTotalAmount = rdd2.mapPartitions((iter) => {
      var count = 0
      var totalAmount = 0.0

      // 同时计算件数和总金额
      while (iter.hasNext) {
        val item = iter.next()
        count += 1
        val price = item._2.price
        println(price)
        totalAmount += price
      }

      Iterator(s"${count}件,$totalAmount")
    })

    // 在分区完成之后的基础上,只保留key
    //    val rdd3 = rdd2.map( x => x._2)

    regionTotalAmount.saveAsTextFile("output19")
  }
}
相关推荐
冷崖6 小时前
消息队列-kafka(一)
分布式·kafka
TracyCoder1236 小时前
ElasticSearch内存管理与操作系统(一):内存分配底层原理
大数据·elasticsearch·搜索引擎
cd_949217218 小时前
九昆仑低碳科技:所罗门群岛全国森林碳汇项目开发合作白皮书
大数据·人工智能·科技
Acrelhuang8 小时前
工商业用电成本高?安科瑞液冷储能一体机一站式解供能难题-安科瑞黄安南
大数据·开发语言·人工智能·物联网·安全
小王毕业啦8 小时前
2010-2024年 非常规高技能劳动力(+文献)
大数据·人工智能·数据挖掘·数据分析·数据统计·社科数据·经管数据
言無咎8 小时前
从规则引擎到任务规划:AI Agent 重构跨境财税复杂账务处理体系
大数据·人工智能·python·重构
张小凡vip8 小时前
数据挖掘(十)---python操作Spark常用命令
python·数据挖掘·spark
uesowys8 小时前
Apache Spark算法开发指导-Decision tree classifier
算法·决策树·spark
私域合规研究9 小时前
【AI应用】AI与大数据融合:中国品牌出海获客的下一代核心引擎
大数据·海外获客
TDengine (老段)9 小时前
金融风控系统中的实时数据库技术实践
大数据·数据库·物联网·时序数据库·tdengine·涛思数据