LangGraph(四)——加入人机交互控制

目录

  • [1. 引言](#1. 引言)
  • [2. 添加Human Assistance工具](#2. 添加Human Assistance工具)
  • [3. 编译状态图](#3. 编译状态图)
  • [4. 提示聊天机器人](#4. 提示聊天机器人)
  • [5. 恢复执行](#5. 恢复执行)
  • 参考

1. 引言

智能体可能不可靠,甚至需要人工输入才能完成任务。同样,对于某些操作,你可能需要在运行前获得人工批准,以保证一切按预期运行。

LangGraph的持久层支持人机交互工作流,允许根据用户反馈暂停和恢复执行。此功能的主要接口是interrupt函数。在节点内部调用Interrupt将暂停执行。可以通过传入command来interrupt执行,并接收新的人工输入。interrupt在人机工程学上类似于Python的内置input(),但也有一些注意事项。

2. 添加Human Assistance工具

初始化聊天模型:

python 复制代码
from langchain.chat_models import init_chat_model

llm = init_chat_model(
	"deepseek:deepseek-chat"
)

使用附加工具将human assistance附加到状态图中:

python 复制代码
from typing import Annotated

from langchain_tavily import TavilySearch
from langchain_core.tools import tool
from typing_extensions import TypedDict

from langgraph.checkpoint.memory import MemorySaver
from langgraph.graph import StateGraph, START, END
from langgraph.graph.message import add_messages
from langgraph.prebuilt import ToolNode, tools_condition

from langgraph.types import Command, interrupt

class State(TypedDict):
    messages: Annotated[list, add_messages]

graph_builder = StateGraph(State)

@tool
def human_assistance(query: str) -> str:
    """Request assistance from a human."""
    human_response = interrupt({"query": query})
    return human_response["data"]

tool = TavilySearch(max_results=2)
tools = [tool, human_assistance]
llm_with_tools = llm.bind_tools(tools)

def chatbot(state: State):
    message = llm_with_tools.invoke(state["messages"])
    # Because we will be interrupting during tool execution,
    # we disable parallel tool calling to avoid repeating any
    # tool invocations when we resume.
    assert len(message.tool_calls) <= 1
    return {"messages": [message]}

graph_builder.add_node("chatbot", chatbot)

tool_node = ToolNode(tools=tools)
graph_builder.add_node("tools", tool_node)

graph_builder.add_conditional_edges(
    "chatbot",
    tools_condition,
)
graph_builder.add_edge("tools", "chatbot")
graph_builder.add_edge(START, "chatbot")

3. 编译状态图

使用检查点编译状态图:

python 复制代码
memory = MemorySaver()

graph = graph_builder.compile(checkpointer=memory)

4. 提示聊天机器人

向聊天机器人提出一个问题,该问题将使用human assistance工具:

python 复制代码
user_input = "I need some expert guidance for building an AI agent. Could you request assistance for me?"
config = {"configurable": {"thread_id": "1"}}

events = graph.stream(
    {"messages": [{"role": "user", "content": user_input}]},
    config,
    stream_mode="values",
)
for event in events:
    if "messages" in event:
        event["messages"][-1].pretty_print()

运行结果为:

聊天机器人生成了一个工具调用,但随后执行被中断。如果你检查状态图,会发现它在工具节点处停止了:

python 复制代码
snapshot = graph.get_state(config)
snapshot.next

运行结果为:

powershell 复制代码
('tools',)

5. 恢复执行

要恢复执行需要传递一个包含工具所需数据的Command对象。此数据的格式可根据需要自定义。在本例中,使用一个带有键"data"字典:

python 复制代码
human_response = (
    "We, the experts are here to help! We'd recommend you check out LangGraph to build your agent."
    " It's much more reliable and extensible than simple autonomous agents."
)

human_command = Command(resume={"data": human_response})

events = graph.stream(human_command, config, stream_mode="values")
for event in events:
    if "messages" in event:
        event["messages"][-1].pretty_print()

运行结果为:

python 复制代码
================================== Ai Message ==================================
Tool Calls:
  human_assistance (call_0_cee258cf-15db-49d4-8495-46761c7ddc65)
 Call ID: call_0_cee258cf-15db-49d4-8495-46761c7ddc65
  Args:
    query: I need expert guidance for building an AI agent.
================================= Tool Message =================================
Name: human_assistance

We, the experts are here to help! We'd recommend you check out LangGraph to build your agent. It's much more reliable and extensible than simple autonomous agents.
================================== Ai Message ==================================

Great! It seems the experts recommend using **LangGraph** for building your AI agent, as it is more reliable and extensible compared to simple autonomous agents. 

If you'd like, I can provide more details about LangGraph or assist you with specific steps to get started. Let me know how you'd like to proceed!

参考

https://langchain-ai.github.io/langgraph/tutorials/get-started/4-human-in-the-loop/

相关推荐
火云牌神19 天前
本地大模型编程实战(28)查询图数据库NEO4J(1)
python·llm·neo4j·langgraph
花开终为谢1 个月前
LangGraph异步化sqlite checkpoint
python·sqlite·langgraph
吴法刚1 个月前
14-Hugging Face 模型微调训练(基于 BERT 的中文评价情感分析(二分类))
人工智能·深度学习·自然语言处理·分类·langchain·bert·langgraph
学不会lostfound2 个月前
五、AIGC大模型_09手动实现ReAct_Agent
人工智能·aigc·langgraph·multi-agent·react_agent·planandexecute
背太阳的牧羊人2 个月前
pop_dialog_state(state: State)弹出对话栈并返回到主助手,让整个对话流程图可以明确追踪对话流,并将控制权委派给特定的子对话图。
python·agent·tools·langgraph
背太阳的牧羊人2 个月前
create_react_agent(model, tools) 和 graph_builder.add_conditional_edges 的联系和区别
人工智能·agent·react·tools·langgraph·聊天模型
火云牌神3 个月前
本地大模型编程实战(25)用langgraph实现基于SQL数据构建的问答系统(4)
sql·llm·qwen·langgraph·deepseek
一根老麻花7 个月前
LangGraph 源码分析 | BaseTool 模板类
langchain·agent·langgraph·源码解读
汀、人工智能10 个月前
Langchain[3]:Langchain架构演进与功能扩展:流式事件处理、事件过滤机制、回调传播策略及装饰器应用
人工智能·langchain·大模型·llm·ai agent·langgraph·大模型框架