langchain langGraph 中streaming 流式输出 stream_mode

一. 支持的流模式

官网地址
stream_mode 有values,updates,custom,messages,debug

values:

每个步骤之后都会打印完整值

updates:

只输出在节点中state有变化的值

messages:
只输出在节点(例如:generate_poem)中调用 LLM

debug:

打印每个节点更详细的信息

cusomter:

从图形节点内部流式传输自定义数据。

writer = get_stream_writer()

writer({"custom_key": "Generating custom data inside node"})

python 复制代码
from typing import TypedDict
from langgraph.graph import StateGraph, START, END
from qwen_model import model
class State(TypedDict):
    topic: str
    joke: str

def refine_topic(state: State):
    return {"topic": state["topic"] + " and cats"}

def generate_joke(state: State):
    return {"joke": f"This is a joke about {state['topic']}"}

def generate_poem(state: State):
    topic=model.invoke("生成一首简单的小诗").content
    return {"topic":  topic}

graph = (
    StateGraph(State)
    .add_node(refine_topic)
    .add_node(generate_joke)
    .add_node(generate_poem)
    .add_edge(START, "refine_topic")
    .add_edge("refine_topic", "generate_joke")
    .add_edge("generate_joke", "generate_poem")
    .add_edge("generate_poem", END)
    .compile()
)

# The stream() method returns an iterator that yields streamed outputs
for stream_event in graph.stream(
    {"topic": "ice cream"},
    # Set stream_mode="updates" to stream only the updates to the graph state after each node
    # Other stream modes are also available. See supported stream modes for details
    stream_mode=["values"],
):
    stream_mode, event = stream_event
    print(f"stream_mode:{stream_mode},chunk={event}")

values:

打印每个节点的state值。从START开始输出接收的值

复制代码
stream_mode:values,chunk={'topic': 'ice cream'}
stream_mode:values,chunk={'topic': 'ice cream and cats'}
stream_mode:values,chunk={'topic': 'ice cream and cats', 'joke': 'This is a joke about ice cream and cats'}
stream_mode:values,chunk={'topic': '春风拂柳绿,  \n花开映水清。  \n燕语呢喃起,  \n轻风送我行。', 'joke': 'This is a joke about ice cream and cats'}

updates:

只输出在节点中state有变化的值

复制代码
stream_mode:updates,chunk={'refine_topic': {'topic': 'ice cream and cats'}}
stream_mode:updates,chunk={'generate_joke': {'joke': 'This is a joke about ice cream and cats'}}
stream_mode:updates,chunk={'generate_poem': {'topic': '春风拂柳青,  \n花开映水清。  \n燕语呢喃起,  \n山色入画屏。'}}

messages:

只输出在节点(例如:generate_poem)中调用 LLM

debug:

打印每个节点更详细的信息

二.对接前端的流式输出api

使用fastapi框架的StreamingResponse,协议使用text/event-stream,message_generator是一个文本生成器

python 复制代码
import json
from collections.abc import AsyncGenerator

from fastapi import APIRouter
from fastapi.responses import StreamingResponse
from langchain_core.messages import HumanMessage
from pydantic import BaseModel, Field


class StreamInput(BaseModel):
    """Basic user input for the agent."""

    message: str = Field(
        description="User input to the agent.",
        examples=["What is the weather in Tokyo?"],
    )
    thread_id: str | None = Field(
        description="Thread ID to persist and continue a multi-turn conversation.",
        default=None,
        examples=["847c6285-8fc9-4560-a83f-4e6285809254"],
    )

router = APIRouter()

@router.post("/stream", response_class=StreamingResponse)
async def stream(user_input: StreamInput) -> StreamingResponse:
    return StreamingResponse(
        message_generator(user_input),
        media_type="text/event-stream",
    )


async def message_generator(
        user_input: StreamInput
) -> AsyncGenerator[str, None]:
    user_msg = {"messages": [HumanMessage(content=user_input.message)]}
    kwargs = {
        "input": user_msg,
    }

    # 运行图
    async for stream_event in agent.astream(
            **kwargs, stream_mode=["updates", "messages", "custom"]
    ):
        stream_mode, event = stream_event
        if stream_mode == "messages":
            msg, metadata = event
            content = msg.content
        if content:
            yield f"data: {json.dumps({'type': 'token', 'content': content})}\n\n"
    yield "data: [DONE]\n\n"
相关推荐
蛇皮划水怪5 小时前
深入浅出LangChain4J
java·langchain·llm
、BeYourself7 小时前
LangChain4j 流式响应
langchain
、BeYourself7 小时前
LangChain4j之Chat and Language
langchain
qfljg9 小时前
langchain usage
langchain
kjkdd13 小时前
6.1 核心组件(Agent)
python·ai·语言模型·langchain·ai编程
渣渣苏17 小时前
Langchain实战快速入门
人工智能·python·langchain
小天呐18 小时前
01—langchain 架构
langchain
香芋Yu20 小时前
【LangChain1.0】第九篇 Agent 架构设计
langchain·agent·架构设计
kjkdd1 天前
5. LangChain设计理念和发展历程
python·语言模型·langchain·ai编程
ASKED_20191 天前
Langchain学习笔记一 -基础模块以及架构概览
笔记·学习·langchain