Kafka工具类

java 复制代码
package utils;

import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.connector.kafka.sink.KafkaRecordSerializationSchema;
import org.apache.flink.connector.kafka.sink.KafkaSink;
import org.apache.flink.connector.kafka.source.KafkaSource;
import org.apache.flink.connector.kafka.source.enumerator.initializer.OffsetsInitializer;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;

/**
 * @Package utils.KafkaUtil
 * @Author xuang
 * @Date 2025/5/13 16:20
 * @description: kafka工具类
 */
public class KafkaUtil {
    public static KafkaSink<String> getKafkaProduct(String servers, String topic) {
        return KafkaSink.<String>builder()
                .setBootstrapServers(servers)
                .setRecordSerializer(KafkaRecordSerializationSchema.builder()
                        .setTopic(topic)
                        .setValueSerializationSchema(new SimpleStringSchema())
                        .build()
                )
                .build();
    }

    public static DataStreamSource<String> getKafkaConsumer(StreamExecutionEnvironment env, String servers, String topic) {
        // 配置 KafkaSource
        KafkaSource<String> source = KafkaSource.<String>builder()
                .setBootstrapServers(servers)
                .setTopics(topic)
                .setGroupId("flink-group")
                .setStartingOffsets(OffsetsInitializer.earliest())
                .setValueOnlyDeserializer(new SimpleStringSchema())
                .build();

        // 将 KafkaSource 添加到作业
        return env.fromSource(source, WatermarkStrategy.noWatermarks(), "Kafka Source");
    }
}

概述

KafkaUtil 是一个 Apache Flink 工具类,封装了 Kafka 作为数据源(Source)和数据汇(Sink)的常用操作,简化了 Flink 与 Kafka 集成的开发工作。

功能

实现细节

Kafka Sink 配置

Kafka Source 配置

最佳实践

  1. Kafka Sink​ - 将 Flink 数据流写入 Kafka

  2. Kafka Source​ - 从 Kafka 读取数据作为 Flink 数据源

  3. 使用 SimpleStringSchema 作为值的序列化器

  4. 支持多服务器配置

  5. 需要指定目标 topic

  6. 使用 SimpleStringSchema 作为值的反序列化器

  7. 从最早偏移量开始消费(earliest())

  8. 默认消费者组 ID 为 "flink-group"

  9. 不使用 watermark 策略

  10. 消费者组管理

    对于生产环境,建议在调用处自定义消费者组 ID,而不是使用默认的 "flink-group"

  11. 序列化扩展

    对于复杂数据类型,可以扩展此类支持自定义序列化/反序列化器

  12. 容错配置

    生产环境中应考虑添加以下配置:

    • 重试策略

    • 事务配置(精确一次语义)

    • 检查点配置

  13. 安全配置

    如果 Kafka 集群启用了安全认证,需要添加以下配置:

    • SSL/TLS

    • SASL 认证

    • ACL 权限

相关推荐
Hello.Reader1 天前
在 YARN 上跑 Flink CDC从 Session 到 Yarn Application 的完整实践
大数据·flink
Sinowintop1 天前
易连EDI-EasyLink无缝集成之消息队列Kafka
分布式·网络协议·kafka·集成·国产化·as2·国产edi
佛祖让我来巡山1 天前
Kafka入门:从初识到Spring Boot实战
kafka·kafka入门·kafka案例
二进制_博客1 天前
eventTime+watermarker+allowedLateness到底窗口关闭时间是什么?
flink·kafka
2501_941403762 天前
Python高性能图像识别与TensorFlow实战分享:深度学习模型优化与批量推理经验
flink
2501_941877982 天前
Python在微服务高并发异步日志聚合与智能告警分析架构中的实践
kafka
最笨的羊羊2 天前
Flink CDC系列之:Kafka CSV 序列化器CsvSerializationSchema
kafka·csv·schema·flink cdc系列·serialization·序列化器
最笨的羊羊2 天前
Flink CDC系列之:Kafka的Debezium JSON 结构定义类DebeziumJsonStruct
kafka·debezium·flink cdc系列·debezium json·结构定义类·jsonstruct
Bug快跑-13 天前
面向高并发场景的多语言异构系统架构演进与性能优化策略深度解析实践分享全过程方法论探索
flink
Hello.Reader3 天前
在 Flink Standalone 集群上运行 Flink CDC从下载到跑起一个 MySQL→Doris 同步任务
大数据·mysql·flink