大模型——多模态检索的RAG系统架构设计

文章目录

多模态检索的RAG系统架构设计 (文本+图像混合检索)


1. 系统架构设计

文本查询 图像查询 用户输入 多模态编码器 文本Embedding模型 图像Embedding模型 联合向量空间 多模态检索器 知识库: 文本+图像 Top-K相关结果 生成模型 多模态输出

核心组件
  1. 多模态编码器

    • 文本分支:使用预训练模型(如BERT、RoBERTa)生成文本Embedding。
    • 图像分支:使用视觉模型(如CLIP的ViT、ResNet)生成图像Embedding。
  2. 联合向量空间

    • 通过对比学习 (如CLIP)或跨模态投影层,将文本和图像向量映射到同一空间。
  3. 多模态检索器

    • 支持混合检索(文本+图像),使用统一索引(如FAISS、Milvus)存储多模态向量。
  4. 生成模型

    • 输入:用户查询 + 检索到的文本/图像元数据 → 生成多模态回答(如描述图像的文字或结合文本的图文回答)。

2. 跨模态向量空间对齐方案

方法一:预训练对齐模型(如CLIP)
  • 原理:直接使用CLIP等已对齐的模型,其文本和图像Encoder输出的向量天然处于同一空间。

  • 优势:开箱即用,无需额外训练。

  • 示例代码

    python 复制代码
    import clip
    model, preprocess = clip.load("ViT-B/32")
    text_embedding = model.encode_text(clip.tokenize("a cat"))
    image_embedding = model.encode_image(preprocess(image))
方法二:跨模态投影网络
  • 步骤

    1. 分别训练文本和图像的单模态Encoder。
    2. 添加投影头(如MLP),将两类向量映射到共享空间。
    3. 通过对比损失 (InfoNCE)或三元组损失优化对齐。
  • 损失函数示例

    python 复制代码
    # 对齐损失(缩小正样本对距离,增大负样本对距离)
    loss = contrastive_loss(text_emb, image_emb, temperature=0.07)
方法三:联合微调
  • 流程
    • 在下游任务(如图文检索)上联合微调文本和图像Encoder。
    • 使用多任务学习(如检索任务+生成任务)进一步对齐。

3. 混合检索策略

  • 方案A:早期融合
    将文本和图像Embedding拼接后检索(需归一化或加权)。

    python 复制代码
    combined_embed = α * text_embed + (1-α) * image_embed  # 加权融合
  • 方案B:后期融合
    分别检索文本和图像结果,再按相似度分数排序合并(如RRF算法)。


4. 关键问题解决

Q: 如何解决模态间向量尺度不一致?
  • 归一化:对文本和图像向量分别做L2归一化。
  • 温度系数:在对比学习中调整softmax温度参数平衡模态贡献。
Q: 如何优化多模态索引效率?
  • 分层索引:对文本和图像分组建库,检索时并行查询。
  • 降维:对高维向量使用PCA或Autoencoder压缩。

5. 扩展能力

  • 动态更新:支持增量插入新模态数据(如新增视频Embedding)。
  • 可解释性:返回检索结果的相似度分数和模态来源(如"此回答参考了图像A和文本B")。

总结

该架构通过预训练对齐投影层学习实现跨模态向量统一,结合混合检索策略,使RAG系统能同时处理文本和图像查询,生成更丰富的多模态回答。

相关推荐
橙子小哥的代码世界1 天前
【大模型RAG】Docker 一键部署 Milvus 完整攻略
linux·docker·大模型·milvus·向量数据库·rag
仙人掌_lz1 天前
如何打造一款金融推理工具Financial Reasoning Workflow:WebUI+Ollama+Fin-R1+MCP/RAG
人工智能·搜索引擎·ai·金融·llm·rag·mcp
gs801402 天前
Tavily 技术详解:为大模型提供实时搜索增强的利器
人工智能·rag
中杯可乐多加冰3 天前
【解决方案-RAGFlow】RAGFlow显示Task is queued、 Microsoft Visual C++ 14.0 or greater is required.
人工智能·大模型·llm·rag·ragflow·deepseek
Baihai IDP4 天前
“一代更比一代强”:现代 RAG 架构的演进之路
ai·llm·rag·genai·白海科技·检索增强生成
X.Cristiano4 天前
LlamaFactory × 多模态RAG × Chat-BI:万字长文探寻RAG进化轨迹,打造卓越专业AI助手
rag·llama factory
程序员一一涤生5 天前
RAG越来越不准?一文详解元数据与标签的系统优化方法(附完整流程图+实用提示词)
知识库·标签·元数据·rag
汪汪汪侠客9 天前
源码解析(一):GraphRAG
算法·面试·大模型·rag·graphrag
哥不是小萝莉9 天前
如何实现RAG与MCP集成
ai·rag
勇敢牛牛_11 天前
近期知识库开发过程中遇到的一些问题
rust·知识库·rag