文章目录
- 现代C++线程池:从入门到生产级实现
-
- [🧠 What Is a Thread Pool?](#🧠 What Is a Thread Pool?)
- [🧩 Why Use a Thread Pool?](#🧩 Why Use a Thread Pool?)
- [🔰 Part 1: Basic Thread Pool (Beginner)](#🔰 Part 1: Basic Thread Pool (Beginner))
-
- [🔧 Minimal Working Code:](#🔧 Minimal Working Code:)
- [✅ Usage:](#✅ Usage:)
- [🧑🔬 Part 2: Improving It (Intermediate)](#🧑🔬 Part 2: Improving It (Intermediate))
-
- [🧵 Add Return Values with `std::future`](#🧵 Add Return Values with
std::future
)
- [🧵 Add Return Values with `std::future`](#🧵 Add Return Values with
- [⚙️ Part 3: Production-Grade Features (Expert)](#⚙️ Part 3: Production-Grade Features (Expert))
-
- [✅ Features to Add:](#✅ Features to Add:)
- [🧵 Part 4: C++20/23 Style Thread Pool](#🧵 Part 4: C++20/23 Style Thread Pool)
- [📚 Libraries You Should Know](#📚 Libraries You Should Know)
- [🧭 Summary](#🧭 Summary)
现代C++线程池:从入门到生产级实现
Introduction to thread_pool
in modern C++ , guiding you through the core ideas and gradually moving toward production-quality implementations. The content is designed to help you deeply understand how thread pools work , and how to write your own using C++17/20/23.
🧠 What Is a Thread Pool?
A thread pool is a collection of pre-spawned threads that wait for tasks to execute. Instead of creating a thread for every task (which is expensive), you reuse a fixed number of threads , each pulling tasks from a task queue.
🧩 Why Use a Thread Pool?
- ✅ Avoid the overhead of frequent thread creation/destruction.
- ✅ Reuse a fixed number of threads.
- ✅ Efficient for high-throughput or I/O-bound systems.
- ✅ Works well with producer-consumer or event-driven designs.
🔰 Part 1: Basic Thread Pool (Beginner)
A very basic thread pool in C++ using:
std::thread
std::mutex
std::condition_variable
std::function
std::queue
🔧 Minimal Working Code:
cpp
#include <iostream>
#include <thread>
#include <vector>
#include <queue>
#include <functional>
#include <mutex>
#include <condition_variable>
#include <atomic>
class ThreadPool {
public:
ThreadPool(size_t num_threads);
~ThreadPool();
void enqueue(std::function<void()> task);
private:
std::vector<std::thread> workers;
std::queue<std::function<void()>> tasks;
std::mutex queue_mutex;
std::condition_variable condition;
std::atomic<bool> stop;
};
ThreadPool::ThreadPool(size_t num_threads) : stop(false) {
for (size_t i = 0; i < num_threads; ++i) {
workers.emplace_back([this]() {
while (true) {
std::function<void()> task;
{
std::unique_lock<std::mutex> lock(this->queue_mutex);
this->condition.wait(lock, [this]() {
return this->stop || !this->tasks.empty();
});
if (this->stop && this->tasks.empty())
return;
task = std::move(this->tasks.front());
this->tasks.pop();
}
task(); // run the task
}
});
}
}
void ThreadPool::enqueue(std::function<void()> task) {
{
std::lock_guard<std::mutex> lock(queue_mutex);
tasks.push(std::move(task));
}
condition.notify_one();
}
ThreadPool::~ThreadPool() {
stop = true;
condition.notify_all();
for (std::thread &worker : workers)
worker.join();
}
✅ Usage:
cpp
int main() {
ThreadPool pool(4);
for (int i = 0; i < 10; ++i) {
pool.enqueue([i]() {
std::cout << "Running task " << i << " on thread "
<< std::this_thread::get_id() << "\n";
});
}
std::this_thread::sleep_for(std::chrono::seconds(1));
return 0;
}
🧑🔬 Part 2: Improving It (Intermediate)
🧵 Add Return Values with std::future
Change enqueue()
to return a std::future<T>
for each task.
cpp
template<class F, class... Args>
auto enqueue(F&& f, Args&&... args)
-> std::future<typename std::invoke_result_t<F, Args...>> {
using return_type = typename std::invoke_result_t<F, Args...>;
auto task = std::make_shared<std::packaged_task<return_type()>>(
std::bind(std::forward<F>(f), std::forward<Args>(args)...)
);
std::future<return_type> res = task->get_future();
{
std::lock_guard<std::mutex> lock(queue_mutex);
tasks.emplace([task]() { (*task)(); });
}
condition.notify_one();
return res;
}
Now you can write:
cpp
auto future = pool.enqueue([]() {
return 42;
});
std::cout << "Result: " << future.get() << "\n";
⚙️ Part 3: Production-Grade Features (Expert)
✅ Features to Add:
Feature | Description |
---|---|
Dynamic thread resizing | Increase/decrease thread count |
Task prioritization | Use std::priority_queue |
Shutdown options | Graceful (drain tasks ) vs Immediate |
Exception handling | Catch exceptions in tasks |
Thread affinity / naming | Set thread names or pin to cores |
Work stealing | For maximum throughput |
Thread-local storage | Use thread_local for caches |
Integration with coroutines (C++20) | Schedule coroutines using the pool |
🧵 Part 4: C++20/23 Style Thread Pool
For advanced users, consider using:
std::jthread
(C++20)std::stop_token
std::barrier
orstd::latch
- Coroutines (
co_await
,std::suspend_always
) execution::scheduler
(C++23 proposal)
Example for C++20 cooperative cancellation:
cpp
void worker(std::stop_token stop_token) {
while (!stop_token.stop_requested()) {
// ...
}
}
std::jthread t(worker); // can be stopped cleanly
📚 Libraries You Should Know
If you prefer using proven libraries:
Library | Link | Notes |
---|---|---|
CTPL | Easy-to-use thread pool | |
BS::thread_pool | Header-only, fast | |
Boost::asio | Heavy but feature-rich | |
libunifex | Advanced async patterns | |
folly | Facebook's production async primitives |
🧭 Summary
Level | Key Concepts |
---|---|
Beginner | std::thread , mutex, condition variable, basic queue |
Intermediate | futures, exception handling, RAII, std::function , shared task management |
Expert | std::jthread , coroutines, scheduling policies, custom allocators, task stealing |