对 Lambda 架构问题的深入理解

感谢 GPT,对很多问题的理解有机会更深。

大家攻击 Lambda 架构,常说的一个点就是 "实时离线指标存在差异"。"实时离线指标存在差异",是一个真实困扰运营方的问题吗?

答案:是的,这是一个真实生活中的痛点。

原因如下,特别是第一条,会让业务运营存在不确定性,为了应对这种不确定性,可能需要预留出业务余量,造成浪费。

  1. 实时数据偏差引发错误判断

    • 运营团队可能在实时看板上看到用户注册数为 900,以为目标还没达成,于是推送通知、加大预算。

    • 结果第二天离线数据跑完,真实注册是 1100,实际早就达成了。

    • 这会造成 资源浪费、判断误差。

  2. 数据不一致影响信任

    • 运营问:"实时看板显示新增 900,日报却说新增 1100,这是哪个错了?"

    • 数据团队解释:"实时数据有水位延迟、数据乱序、去重不完整......"

    • 非技术同学听不懂,久而久之就对系统失去信任。

  3. 多方依赖相同指标,版本不一致

    • 实时系统和离线系统往往使用不同代码、不同计算链路:

    • 实时:Kafka → Flink → Redis/ClickHouse

    • 离线:Hive/Spark → HDFS → 数据仓库

    • 一点小的业务逻辑差异、时间处理方式不同、清洗策略不同,就会让指标产生偏差。

附1:实时指标为什么可能不对?

答:因为 Flink 的计算有时间窗口的概念,比如:每个整点,计算上一个小时的销售额。因为队列延迟、网络出错、重试导致数据重复等原因,会让 Kafka 等队列中的数据不能完全被信任,上一个小时的数据不一定真的全了,可能有一些数据要等几分钟才到,也有可能永远不到。

为了解决这个问题,一般会延迟几分钟,等等跑慢了的数据。但也不能无限等下去。理论上总是可能有数据来晚了。

附2:批处理系统(离线) + 流处理系统(实时) + Serving 层合并结果为什么不准?

简而言之:因为实时数据不准确,那么 Serving 的到的数据肯定也不准确。

Lambda 架构:批处理系统(离线) + 流处理系统(实时) + Serving 层合并结果

我之前的疑问:Serving 层如何合并?如何保证离线+实时,得到准确的全量数据?

一般大家说得不到,原因就在于

(1)流处理系统拿到的数据可能是不准确的

(2)离线、实时数据的边界可能有模糊的地方。

相关推荐
专业软件系统开发1 小时前
药品说明书查询系统源码 本地数据库 PHP版本
数据库·查询系统源码·说明书查询源码
冉冰学姐5 小时前
SSM足球爱好者服务平台i387z(程序+源码+数据库+调试部署+开发环境)带论文文档1万字以上,文末可获取,系统界面在最后面。
数据库·ssm 框架·足球爱好者服务平台
大飞记Python5 小时前
部门管理|“编辑部门”功能实现(Django5零基础Web平台)
前端·数据库·python·django
清风6666667 小时前
基于单片机的智能收银机模拟系统设计
数据库·单片机·毕业设计·nosql·课程设计
资深低代码开发平台专家7 小时前
PostgreSQL 18 发布
数据库·postgresql
可触的未来,发芽的智生7 小时前
新奇特:黑猫警长的纳米世界,忆阻器与神经网络的智慧
javascript·人工智能·python·神经网络·架构
悟乙己8 小时前
MLops | 基于AWS Lambda 架构构建强大的机器学习(ML)血缘关系
机器学习·架构·aws
007php0078 小时前
百度面试题解析:微服务架构、Dubbo、Redis及其一致性问题(一)
redis·百度·docker·微服务·容器·职场和发展·架构
与衫8 小时前
在 VS Code 里看清你的数据流向:Gudu SQL Omni 实测体验
数据库·sql