对 Lambda 架构问题的深入理解

感谢 GPT,对很多问题的理解有机会更深。

大家攻击 Lambda 架构,常说的一个点就是 "实时离线指标存在差异"。"实时离线指标存在差异",是一个真实困扰运营方的问题吗?

答案:是的,这是一个真实生活中的痛点。

原因如下,特别是第一条,会让业务运营存在不确定性,为了应对这种不确定性,可能需要预留出业务余量,造成浪费。

  1. 实时数据偏差引发错误判断

    • 运营团队可能在实时看板上看到用户注册数为 900,以为目标还没达成,于是推送通知、加大预算。

    • 结果第二天离线数据跑完,真实注册是 1100,实际早就达成了。

    • 这会造成 资源浪费、判断误差。

  2. 数据不一致影响信任

    • 运营问:"实时看板显示新增 900,日报却说新增 1100,这是哪个错了?"

    • 数据团队解释:"实时数据有水位延迟、数据乱序、去重不完整......"

    • 非技术同学听不懂,久而久之就对系统失去信任。

  3. 多方依赖相同指标,版本不一致

    • 实时系统和离线系统往往使用不同代码、不同计算链路:

    • 实时:Kafka → Flink → Redis/ClickHouse

    • 离线:Hive/Spark → HDFS → 数据仓库

    • 一点小的业务逻辑差异、时间处理方式不同、清洗策略不同,就会让指标产生偏差。

附1:实时指标为什么可能不对?

答:因为 Flink 的计算有时间窗口的概念,比如:每个整点,计算上一个小时的销售额。因为队列延迟、网络出错、重试导致数据重复等原因,会让 Kafka 等队列中的数据不能完全被信任,上一个小时的数据不一定真的全了,可能有一些数据要等几分钟才到,也有可能永远不到。

为了解决这个问题,一般会延迟几分钟,等等跑慢了的数据。但也不能无限等下去。理论上总是可能有数据来晚了。

附2:批处理系统(离线) + 流处理系统(实时) + Serving 层合并结果为什么不准?

简而言之:因为实时数据不准确,那么 Serving 的到的数据肯定也不准确。

Lambda 架构:批处理系统(离线) + 流处理系统(实时) + Serving 层合并结果

我之前的疑问:Serving 层如何合并?如何保证离线+实时,得到准确的全量数据?

一般大家说得不到,原因就在于

(1)流处理系统拿到的数据可能是不准确的

(2)离线、实时数据的边界可能有模糊的地方。

相关推荐
路人与大师1 小时前
构建基于全面业务数据的大数据与大模型企业护城河战略
大数据·语言模型·策略模式
DBWYX3 小时前
从零启动 Elasticsearch
大数据·elasticsearch·搜索引擎
清幽竹客6 小时前
redis数据持久化和配置-15(备份和还原 Redis 数据)
数据库·redis·缓存
捡星星同学6 小时前
MySQL与Redis数据同步实践与优化
数据库·redis·mysql
Ao0000006 小时前
数据库5——审计及触发器
android·数据库
夜影风6 小时前
关于数据仓库、数据湖、数据平台、数据中台和湖仓一体的概念和区别
大数据·数据仓库·spark
Blossom.1187 小时前
量子计算在金融科技中的应用前景
大数据·人工智能·安全·机器学习·计算机视觉·金融·量子计算
明天不下雨(牛客同名)7 小时前
介绍一下 MVCC
java·服务器·数据库
递归尽头是星辰7 小时前
ClickHouse核心优势分析与场景实战
大数据·数据仓库·clickhouse·实时分析·实时查询