实验设计与分析(第6版,Montgomery)第5章析因设计引导5.7节思考题5.6 R语言解题

本文是实验设计与分析(第6版,Montgomery著,傅珏生译) 第5章析因设计引导5.7节思考题5.6 R语言解题。主要涉及方差分析,正态假设检验,残差分析,交互作用图,等值线图。

dataframe <-data.frame(

strength=c(109,110,110,112,116,114,110,115,110,111,112,115,108,109,111,109,114,119,110,108,114,112,120,117),

machine=gl(4,6,24),

operator=gl(3,2,24))

summary (dataframe)

dataframe.aov2 <- aov(strength~operator*machine,data=dataframe)

summary (dataframe.aov2)

> summary (dataframe.aov2)

Df Sum Sq Mean Sq F value Pr(>F)

operator 2 160.33 80.17 21.143 0.000117 ***

machine 3 12.46 4.15 1.095 0.388753

operator:machine 6 44.67 7.44 1.963 0.150681

Residuals 12 45.50 3.79


Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

with(dataframe,interaction.plot(machine,operator,strength,type="b",pch=19,fixed=T,xlab="operator",ylab="strength"))

plot.design(strength~machine*operator,data=dataframe)

fit <-lm(strength~operator*machine,data=dataframe)

anova(fit)

> anova(fit)

Analysis of Variance Table

Response: strength

Df Sum Sq Mean Sq F value Pr(>F)

operator 2 160.333 80.167 21.1429 0.0001167 ***

machine 3 12.458 4.153 1.0952 0.3887526

operator:machine 6 44.667 7.444 1.9634 0.1506807

Residuals 12 45.500 3.792


Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

summary(fit)

> summary(fit)

Call:

lm(formula = strength ~ operator * machine, data = dataframe)

Residuals:

Min 1Q Median 3Q Max

-2.5 -1.0 0.0 1.0 2.5

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.095e+02 1.377e+00 79.527 <2e-16 ***

operator2 1.500e+00 1.947e+00 0.770 0.4560

operator3 5.500e+00 1.947e+00 2.825 0.0153 *

machine2 3.000e+00 1.947e+00 1.541 0.1493

machine3 -1.000e+00 1.947e+00 -0.514 0.6169

machine4 -5.000e-01 1.947e+00 -0.257 0.8017

operator2:machine2 -3.500e+00 2.754e+00 -1.271 0.2278

operator3:machine2 -4.500e+00 2.754e+00 -1.634 0.1282

operator2:machine3 8.808e-14 2.754e+00 0.000 1.0000

operator3:machine3 2.500e+00 2.754e+00 0.908 0.3818

operator2:machine4 2.500e+00 2.754e+00 0.908 0.3818

operator3:machine4 4.000e+00 2.754e+00 1.453 0.1720


Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.947 on 12 degrees of freedom

Multiple R-squared: 0.827, Adjusted R-squared: 0.6684

F-statistic: 5.214 on 11 and 12 DF, p-value: 0.004136

par(mfrow=c(2,2))

plot(fit)

par(mfrow=c(2,2))

plot(as.numeric(dataframemachine), fitresiduals, xlab="machine", ylab="Residuals", type="p", pch=16)

plot(as.numeric(dataframeoperator), fitresiduals, xlab="operator", ylab="Residuals", pch=16)

相关推荐
2501_9413331015 分钟前
表格结构识别与内容解析——基于Cascade R-CNN的表格行、列、单元格自动检测与分类_1
分类·r语言·cnn
云州牧30 分钟前
Mastering Shiny 08 User feedback
r语言
淮北49412 小时前
科研绘图工具R语言
开发语言·r语言
余醉 | dtminer2 天前
R语言常见新手问题
开发语言·r语言
佳哥的技术分享2 天前
Function<T, R> 中 apply,compose, andThen 方法总结
java·学习·r语言
2501_942191773 天前
纺织品微观缺陷检测与分类:基于Faster R-CNN的改进模型实现与性能优化_1
分类·r语言·cnn
TDengine (老段)3 天前
TDengine R 语言连接器进阶指南
大数据·开发语言·数据库·r语言·时序数据库·tdengine·涛思数据
Katecat996633 天前
肾衰竭医学影像多类别目标检测:基于Mask R-CNN的囊肿、肾脏、结石和肿瘤六类病变特征识别_1
目标检测·r语言·cnn
2501_942191774 天前
使用Faster R-CNN实现网球球检测:基于R50-FPN-MS-3x模型的COCO数据集训练与优化
目标跟踪·r语言·cnn
2501_941329724 天前
长豆荚目标检测:Faster R-CNN改进模型实战与优化
目标检测·r语言·cnn