从0开始学习R语言--Day15--非参数检验

非参数检验

如果在进行T检验去比较两组数据差异时,假如数据里存在异常值,会把数据之间的差异拉的很大,影响正常的判断。那么这个时候,我们可以尝试用非参数检验的方式来比较数据。

假设我们有A,B两筐苹果,我们并不知道重量具体是多少,且看着苹果有很多不同大小,有的异常大,有的特别小。此时,我们先对两筐苹果做上属于各自的A、B标记,然后混在一起,通过天平比较大小,也就是对苹果重量做个排名。然后计算各自分组的所有苹果的排名总和,并计算检验统计量

将求得的U与以两组苹果数量为基础查的查曼-惠特尼U检验临界值表的U做对比,如果小于后者,则说明两组苹果存在差异。

下面我们用一组例子来说明:

R 复制代码
set.seed(123)

# A筐苹果:偏重的苹果(大部分在150g-300g)
apple_A <- round(runif(10, min=150, max=300), 1)

# B筐苹果:偏轻的苹果(大部分在100g-200g)
apple_B <- round(runif(10, min=100, max=200), 1)

# 创建数据框
fruit_data <- data.frame(
  weight = c(apple_A, apple_B),
  basket = rep(c("A", "B"), each=10)  # 标记属于哪一筐
)

# 查看数据
print(fruit_data)

boxplot(weight ~ basket, data=fruit_data, 
        col=c("lightgreen", "orange"),
        main="两筐苹果的重量对比")

wilcox.test(weight ~ basket, data=fruit_data)

输出:

R 复制代码
	Wilcoxon rank sum exact test

data:  weight by basket
W = 93, p-value = 0.0004871
alternative hypothesis: true location shift is not equal to 0

从输出中可以看到,首先根据箱线图判断,因为明显不重叠,所以判断出两组数据可能存在差异。此时我们进一步计算,由于p=0.0004871 ,小于等于0.05,从而可以确定存在显著的差异,而不是因为异常值导致的差异。

相关推荐
烤麻辣烫2 小时前
黑马程序员苍穹外卖(新手)Day1
java·数据库·spring boot·学习·mybatis
提娜米苏2 小时前
Bash Shell脚本学习——唇读数据集验证脚本
开发语言·学习·bash
xwz小王子4 小时前
PerAct2:机器人双臂操作任务的基准测试和学习
学习·机器人
d111111111d5 小时前
STM32外设学习--DMA直接存储器读取--学习笔记。
笔记·stm32·单片机·嵌入式硬件·学习
on_pluto_5 小时前
【推荐系统14】数据分析:以阿里天池新闻推荐为例学习
人工智能·学习·数据挖掘·数据分析·推荐算法
数学难5 小时前
数据分析学习路线
学习·数据挖掘·数据分析
搞机械的假程序猿5 小时前
普中51单片机学习笔记-前言
笔记·学习·51单片机
宋辰月6 小时前
学习react第一天
javascript·学习·react.js
笨鸟笃行6 小时前
百日挑战——单词篇(第十八天)
学习
好奇龙猫6 小时前
日语学习-日语知识点小记-构建基础-JLPT-N3阶段-二阶段(16):文法和单词-第四课
学习