从0开始学习R语言--Day15--非参数检验

非参数检验

如果在进行T检验去比较两组数据差异时,假如数据里存在异常值,会把数据之间的差异拉的很大,影响正常的判断。那么这个时候,我们可以尝试用非参数检验的方式来比较数据。

假设我们有A,B两筐苹果,我们并不知道重量具体是多少,且看着苹果有很多不同大小,有的异常大,有的特别小。此时,我们先对两筐苹果做上属于各自的A、B标记,然后混在一起,通过天平比较大小,也就是对苹果重量做个排名。然后计算各自分组的所有苹果的排名总和,并计算检验统计量

将求得的U与以两组苹果数量为基础查的查曼-惠特尼U检验临界值表的U做对比,如果小于后者,则说明两组苹果存在差异。

下面我们用一组例子来说明:

R 复制代码
set.seed(123)

# A筐苹果:偏重的苹果(大部分在150g-300g)
apple_A <- round(runif(10, min=150, max=300), 1)

# B筐苹果:偏轻的苹果(大部分在100g-200g)
apple_B <- round(runif(10, min=100, max=200), 1)

# 创建数据框
fruit_data <- data.frame(
  weight = c(apple_A, apple_B),
  basket = rep(c("A", "B"), each=10)  # 标记属于哪一筐
)

# 查看数据
print(fruit_data)

boxplot(weight ~ basket, data=fruit_data, 
        col=c("lightgreen", "orange"),
        main="两筐苹果的重量对比")

wilcox.test(weight ~ basket, data=fruit_data)

输出:

R 复制代码
	Wilcoxon rank sum exact test

data:  weight by basket
W = 93, p-value = 0.0004871
alternative hypothesis: true location shift is not equal to 0

从输出中可以看到,首先根据箱线图判断,因为明显不重叠,所以判断出两组数据可能存在差异。此时我们进一步计算,由于p=0.0004871 ,小于等于0.05,从而可以确定存在显著的差异,而不是因为异常值导致的差异。

相关推荐
敲敲了个代码24 分钟前
隐式类型转换:哈基米 == 猫 ? true :false
开发语言·前端·javascript·学习·面试·web
Pandora_4171 小时前
cursor学习
学习
崇山峻岭之间2 小时前
Matlab学习笔记02
笔记·学习·matlab
Kiri霧3 小时前
Range循环和切片
前端·后端·学习·golang
hssfscv4 小时前
Javaweb 学习笔记——html+css
前端·笔记·学习
Mr.Jessy4 小时前
JavaScript高级:深浅拷贝、异常处理、防抖及节流
开发语言·前端·javascript·学习
博客胡5 小时前
Python-fastAPI的学习与使用
学习·fastapi·ai编程
HyperAI超神经5 小时前
【Triton 教程】triton_language.load
人工智能·学习·大语言模型·cpu·gpu·编程语言·triton
知识分享小能手5 小时前
Ubuntu入门学习教程,从入门到精通,Linux操作系统概述(1)
linux·学习·ubuntu
yuhaiqun19896 小时前
Typora 技能进阶:从会写 Markdown 到玩转配置 + 插件高效学习笔记
经验分享·笔记·python·学习·学习方法·ai编程·markdown