聚类分析 | MATLAB实现基于SOM自组织特征映射聚类可视化

聚类分析 | MATLAB实现基于SOM自组织特征映射聚类可视化

目录

效果一览


完整代码:聚类分析 | MATLAB实现基于SOM自组织特征映射聚类可视化

基本介绍

代码功能简述

该MATLAB代码实现了以下核心功能:

数据预处理:导入Excel数据集,进行转置操作和归一化处理(归一化到[0,1]区间)

SOM聚类:使用2×2的自组织映射网络对数据进行无监督聚类(输出4个类别)

t-SNE降维可视化:将高维数据降至2维,并绘制聚类结果散点图

算法原理详解

SOM(自组织映射):

拓扑结构:创建2×2的竞争层神经网络(输出4个神经元)

竞争学习:通过无监督训练使相似样本激活相同神经元

权重更新:获胜神经元及其邻域神经元权重向输入样本靠近

聚类原理:vec2ind函数将输出转换为1-4的类别标签

t-SNE(t分布随机邻域嵌入):

降维机制:通过概率分布保持高维数据的局部结构

相似度计算:使用t分布建模低维空间相似度

可视化优势:擅长保留聚类结构,适合高维数据可视化

数据归一化:

采用mapminmax函数进行Min-Max标准化:

图片

运行环境要求

MATLAB版本:必需R2017a或更高版本(tsne函数引入版本),推荐R2020b+ 以获得最佳性能。

执行流程示意图

关键参数说明

该代码适用于中小规模数据集(≤10,000样本)的探索性聚类分析,典型应用场景包括数据分群、特征聚类。

程序设计

clike 复制代码
clear
clc
warning off
%%  导入数据
result = xlsread('数据集.xlsx');
%%  参数设置
M  = size(result, 1);          % 样本数目
%%  输入特征
result = result';
%%  数据归一化
[p_train, ps_input] = mapminmax(result, 0, 1);
%%  矩阵转置
p_train = p_train';
%%  SOM 聚类算法
net = selforgmap([2 2]);  % 创建一个 2x2 的 SOM

参考资料

1\] https://blog.csdn.net/kjm13182345320/article/details/129215161 \[2\] https://blog.csdn.net/kjm13182345320/article/details/128105718

相关推荐
whoarethenext2 分钟前
使用 C++/OpenCV 图像直方图比较两个图片相似度
开发语言·c++·opencv·直方图·相似度对比
csdndenglu1 小时前
QT 5.9.2+VTK8.0实现等高线绘制
开发语言·qt
某某1 小时前
DashBoard安装使用
大数据·开发语言·kubernetes
@Turbo@1 小时前
【QT】QString& 与QString区别
开发语言·qt
明月看潮生4 小时前
青少年编程与数学 02-020 C#程序设计基础 15课题、异常处理
开发语言·青少年编程·c#·编程与数学
你这个代码我看不懂4 小时前
Java项目OOM排查
java·开发语言
暴力求解5 小时前
C语言---动态内存管理、柔性数组
c语言·开发语言·算法
先做个垃圾出来………5 小时前
Python中使用pandas
开发语言·python·pandas
DanmF--5 小时前
C#面向对象实践项目--贪吃蛇
开发语言·游戏·c#·游戏程序
@老蝴5 小时前
C语言 — 动态内存管理
android·c语言·开发语言