@浙大疏锦行
kaggle找到一个图像数据集,用cnn网络进行训练并且用grad-cam做可视化
进阶:并拆分成多个文件

python
fruit_cnn_project/
├─ data/ # 存放数据集(需手动创建,后续放入图片)
│ ├─ train/ # 训练集图像
│ └─ val/ # 验证集图像
├─ models/ # 模型定义
│ └─ cnn_model.py # CNN网络结构
├─ utils/ # 工具函数
│ ├─ dataset_utils.py # 数据加载与预处理
│ ├─ grad_cam.py # Grad-CAM可视化
│ └─ train_utils.py # 训练与评估
├─ main.py # 主程序
└─ requirements.txt # 依赖列表(可选)
python
# 第一部分:导入库
import os
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
import torch.nn.functional as F
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
# 第二部分:数据加载与预处理
def load_data():
data_transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
train_dataset = datasets.ImageFolder(root='data/train', transform=data_transform)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=32, shuffle=True)
test_dataset = datasets.ImageFolder(root='data/test', transform=data_transform)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=32, shuffle=False)
return train_loader, test_loader
# 第三部分:模型定义
class SimpleCNN(nn.Module):
def __init__(self):
super(SimpleCNN, self).__init__()
self.conv1 = nn.Conv2d(3, 16, kernel_size=3, padding=1)
self.relu = nn.ReLU()
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(16, 32, kernel_size=3, padding=1)
self.fc1 = nn.Linear(32 * 56 * 56, 128)
self.fc2 = nn.Linear(128, 2)
def forward(self, x):
x = self.pool(self.relu(self.conv1(x)))
x = self.pool(self.relu(self.conv2(x)))
x = x.view(-1, 32 * 56 * 56)
x = self.relu(self.fc1(x))
x = self.fc2(x)
return x
# 第四部分:模型训练
train_loader, _ = load_data()
model = SimpleCNN()
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
num_epochs = 10
for epoch in range(num_epochs):
running_loss = 0.0
for i, data in enumerate(train_loader, 0):
inputs, labels = data
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
print(f'Epoch {epoch + 1}, Loss: {running_loss / len(train_loader)}')
torch.save(model.state_dict(), 'trained_model.pth')
# 第五部分:模型测试
_, test_loader = load_data()
model = SimpleCNN()
model.load_state_dict(torch.load('trained_model.pth'))
model.eval()
correct = 0
total = 0
with torch.no_grad():
for data in test_loader:
images, labels = data
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print(f'Accuracy of the network on the test images: {100 * correct / total}%')
# 第六部分:Grad-CAM可视化(修复版)
def get_activation():
activation = {}
def hook(model, input, output):
activation['target_layer'] = output.detach()
return hook, activation
def grad_cam(model, image, target_class_index):
hook, activation = get_activation()
target_layer = model.conv2
target_layer.register_forward_hook(hook)
model.eval()
image = image.unsqueeze(0)
image.requires_grad_(True)
output = model(image)
one_hot = torch.zeros(1, output.size()[-1]).to(image.device)
one_hot[0][target_class_index] = 1
output.backward(gradient=one_hot, retain_graph=True)
gradients = image.grad[0].cpu().numpy()
# 从activation字典中获取激活图
activation_map = activation['target_layer'].cpu().numpy()[0]
weights = np.mean(gradients, axis=(1, 2))
cam = np.zeros(activation_map.shape[1:], dtype=np.float32)
for i, w in enumerate(weights):
cam += w * activation_map[i]
cam = np.maximum(cam, 0)
cam = F.interpolate(
torch.from_numpy(cam).unsqueeze(0).unsqueeze(0),
size=(224, 224),
mode='bilinear',
align_corners=False
)[0][0].numpy()
cam = (cam - cam.min()) / (cam.max() - cam.min())
return cam
# 可视化前几张测试图片
dataiter = iter(test_loader)
images, labels = dataiter.next()
for i in range(5): # 可视化前5张图片
image = images[i]
label = labels[i].item()
cam = grad_cam(model, image, label)
plt.figure(figsize=(10, 5))
plt.subplot(1, 2, 1)
plt.imshow(image.permute(1, 2, 0).numpy())
plt.title(f'Original Image (Class: {label})')
plt.axis('off')
plt.subplot(1, 2, 2)
plt.imshow(image.permute(1, 2, 0).numpy())
plt.imshow(cam, cmap='jet', alpha=0.5)
plt.title('Grad-CAM Visualization')
plt.axis('off')
plt.tight_layout()
plt.show()