python第31天打卡

python 复制代码
import numpy as np
from tensorflow import keras
from tensorflow.keras import layers, optimizers, utils, datasets

# 数据加载和预处理函数
def load_and_preprocess_data():
    (x_train, y_train), (x_test, y_test) = datasets.mnist.load_data()
    # 重塑并归一化图像数据
    x_train = x_train.reshape(-1, 28, 28, 1).astype("float32") / 255.0
    x_test = x_test.reshape(-1, 28, 28, 1).astype("float32") / 255.0
    # 转换标签为one-hot编码
    y_train = utils.to_categorical(y_train, 10)
    y_test = utils.to_categorical(y_test, 10)
    return (x_train, y_train), (x_test, y_test)

# 模型定义
def create_simple_cnn():
    return keras.Sequential([
        layers.Conv2D(16, (3, 3), activation='relu', input_shape=(28, 28, 1)),
        layers.MaxPooling2D((2, 2)),
        layers.Flatten(),
        layers.Dense(128, activation='relu'),
        layers.Dense(10, activation='softmax')
    ])

def create_complex_cnn():
    return keras.Sequential([
        layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)),
        layers.MaxPooling2D((2, 2)),
        layers.Conv2D(64, (3, 3), activation='relu'),
        layers.MaxPooling2D((2, 2)),
        layers.Flatten(),
        layers.Dense(256, activation='relu'),
        layers.Dense(128, activation='relu'),
        layers.Dense(10, activation='softmax')
    ])

# 训练和评估函数
def train_and_evaluate(model, optimizer, x_train, y_train, x_test, y_test):
    model.compile(
        optimizer=optimizer,
        loss='categorical_crossentropy',
        metrics=['accuracy']
    )
    history = model.fit(
        x_train, y_train,
        epochs=5,
        batch_size=64,
        validation_data=(x_test, y_test)
    )
    return history.history

# 主程序
if __name__ == "__main__":
    # 加载数据
    (x_train, y_train), (x_test, y_test) = load_and_preprocess_data()
    
    # 模型和优化器配置
    model_configs = [
        ('Simple CNN', create_simple_cnn),
        ('Complex CNN', create_complex_cnn)
    ]
    optimizers_config = {
        'SGD': optimizers.SGD(learning_rate=0.01),
        'Adam': optimizers.Adam(learning_rate=0.001)
    }
    
    # 训练和评估所有组合
    results = {}
    for model_name, model_fn in model_configs:
        for opt_name, optimizer in optimizers_config.items():
            print(f"\n{'='*50}")
            print(f"Training {model_name} with {opt_name} optimizer:")
            
            model = model_fn()
            history = train_and_evaluate(
                model, optimizer,
                x_train, y_train,
                x_test, y_test
            )
            
            # 记录结果
            results[f"{model_name}_{opt_name}"] = history
            print(f"\nTraining results for {model_name}/{opt_name}:")
            print(f"Final Training Accuracy: {history['accuracy'][-1]:.4f}")
            print(f"Final Validation Accuracy: {history['val_accuracy'][-1]:.4f}")
            print(f"Final Training Loss: {history['loss'][-1]:.4f}")
            print(f"Final Validation Loss: {history['val_loss'][-1]:.4f}")

@浙大疏锦行

相关推荐
小程故事多_804 小时前
Agent Infra核心技术解析:Sandbox sandbox技术原理、选型逻辑与主流方案全景
java·开发语言·人工智能·aigc
沐知全栈开发4 小时前
SQL 日期处理指南
开发语言
黎雁·泠崖4 小时前
【魔法森林冒险】3/14 Allen类(一):主角核心属性与初始化
java·开发语言
黎雁·泠崖4 小时前
【魔法森林冒险】1/14 项目总览:用Java打造你的第一个回合制冒险游戏
java·开发语言
独好紫罗兰4 小时前
对python的再认识-基于数据结构进行-a006-元组-拓展
开发语言·数据结构·python
Dfreedom.4 小时前
图像直方图完全解析:从原理到实战应用
图像处理·python·opencv·直方图·直方图均衡化
C++ 老炮儿的技术栈4 小时前
Qt 编写 TcpClient 程序 详细步骤
c语言·开发语言·数据库·c++·qt·算法
yuuki2332334 小时前
【C++】继承
开发语言·c++·windows
222you4 小时前
Redis的主从复制和哨兵机制
java·开发语言
铉铉这波能秀4 小时前
LeetCode Hot100数据结构背景知识之集合(Set)Python2026新版
数据结构·python·算法·leetcode·哈希算法