python第31天打卡

python 复制代码
import numpy as np
from tensorflow import keras
from tensorflow.keras import layers, optimizers, utils, datasets

# 数据加载和预处理函数
def load_and_preprocess_data():
    (x_train, y_train), (x_test, y_test) = datasets.mnist.load_data()
    # 重塑并归一化图像数据
    x_train = x_train.reshape(-1, 28, 28, 1).astype("float32") / 255.0
    x_test = x_test.reshape(-1, 28, 28, 1).astype("float32") / 255.0
    # 转换标签为one-hot编码
    y_train = utils.to_categorical(y_train, 10)
    y_test = utils.to_categorical(y_test, 10)
    return (x_train, y_train), (x_test, y_test)

# 模型定义
def create_simple_cnn():
    return keras.Sequential([
        layers.Conv2D(16, (3, 3), activation='relu', input_shape=(28, 28, 1)),
        layers.MaxPooling2D((2, 2)),
        layers.Flatten(),
        layers.Dense(128, activation='relu'),
        layers.Dense(10, activation='softmax')
    ])

def create_complex_cnn():
    return keras.Sequential([
        layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)),
        layers.MaxPooling2D((2, 2)),
        layers.Conv2D(64, (3, 3), activation='relu'),
        layers.MaxPooling2D((2, 2)),
        layers.Flatten(),
        layers.Dense(256, activation='relu'),
        layers.Dense(128, activation='relu'),
        layers.Dense(10, activation='softmax')
    ])

# 训练和评估函数
def train_and_evaluate(model, optimizer, x_train, y_train, x_test, y_test):
    model.compile(
        optimizer=optimizer,
        loss='categorical_crossentropy',
        metrics=['accuracy']
    )
    history = model.fit(
        x_train, y_train,
        epochs=5,
        batch_size=64,
        validation_data=(x_test, y_test)
    )
    return history.history

# 主程序
if __name__ == "__main__":
    # 加载数据
    (x_train, y_train), (x_test, y_test) = load_and_preprocess_data()
    
    # 模型和优化器配置
    model_configs = [
        ('Simple CNN', create_simple_cnn),
        ('Complex CNN', create_complex_cnn)
    ]
    optimizers_config = {
        'SGD': optimizers.SGD(learning_rate=0.01),
        'Adam': optimizers.Adam(learning_rate=0.001)
    }
    
    # 训练和评估所有组合
    results = {}
    for model_name, model_fn in model_configs:
        for opt_name, optimizer in optimizers_config.items():
            print(f"\n{'='*50}")
            print(f"Training {model_name} with {opt_name} optimizer:")
            
            model = model_fn()
            history = train_and_evaluate(
                model, optimizer,
                x_train, y_train,
                x_test, y_test
            )
            
            # 记录结果
            results[f"{model_name}_{opt_name}"] = history
            print(f"\nTraining results for {model_name}/{opt_name}:")
            print(f"Final Training Accuracy: {history['accuracy'][-1]:.4f}")
            print(f"Final Validation Accuracy: {history['val_accuracy'][-1]:.4f}")
            print(f"Final Training Loss: {history['loss'][-1]:.4f}")
            print(f"Final Validation Loss: {history['val_loss'][-1]:.4f}")

@浙大疏锦行

相关推荐
yaoh.wang14 小时前
力扣(LeetCode) 1: 两数之和 - 解法思路
python·程序人生·算法·leetcode·面试·跳槽·哈希算法
APIshop14 小时前
Java爬虫1688详情api接口实战解析
java·开发语言·爬虫
Mr.Jessy15 小时前
JavaScript高级:深浅拷贝、异常处理、防抖及节流
开发语言·前端·javascript·学习
bing.shao15 小时前
Golang 高并发秒杀系统踩坑
开发语言·后端·golang
liwulin050615 小时前
【PYTHON-YOLOV8N】关于YOLO的推理训练图片的尺寸
开发语言·python·yolo
我送炭你添花15 小时前
Pelco KBD300A 模拟器:04+1.Python 打包详解:历史、发展与多种方式对比
python·测试工具·运维开发
yaoh.wang15 小时前
力扣(LeetCode) 27: 移除元素 - 解法思路
python·程序人生·算法·leetcode·面试·职场和发展·双指针
幸存者letp15 小时前
Python 常用方法分类大全
linux·服务器·python
lsx20240615 小时前
C语言中的强制类型转换
开发语言
coderHing[专注前端]15 小时前
告别 try/catch 地狱:用三元组重新定义 JavaScript 错误处理
开发语言·前端·javascript·react.js·前端框架·ecmascript