LLaMA-Factory - 批量推理(inference)的脚本

scripts/vllm_infer.py 是 LLaMA-Factory 团队用于批量推理(inference)的脚本,基于 vLLM 引擎,支持高效的并行推理。它可以对一个数据集批量生成模型输出,并保存为 JSONL 文件,适合大规模评测和自动化测试。

一、 环境准备

激活LLaMaFactory环境,进入LLaMaFactory目录

python 复制代码
cd LLaMA-Factory

conda activate llamafactory

已安装 vLLM

你需要先安装 vLLM(https://github.com/vllm-project/vllm),否则脚本无法运行。

python 复制代码
   pip install vllm

已安装 fire

该脚本用 fire 作为命令行参数解析器。

python 复制代码
   pip install fire

准备好模型和数据集

讲待推理文件放到LLaMA-Factory/data目录下

修改dataset_info.json文件

二、如何用 vLLM 正确加载 LoRA/adapter 微调模型进行批量推理?

1. 指定主模型和 adapter

vLLM 支持加载主模型+adapter(LoRA)权重。你需要:

  • --model_name_or_path 指向主模型目录(如 /root/.cache/modelscope/hub/models/XGenerationLab/XiYanSQL-QwenCoder-3B-2504)
  • --adapter_name_or_path 指向adapter目录(如 /root/LLaMA-Factory/output/qwencoder-sft)

2. 命令

python 复制代码
python scripts/vllm_infer.py \
  --model_name_or_path /root/.cache/modelscope/hub/models/XGenerationLab/XiYanSQL-QwenCoder-3B-2504 \
  --adapter_name_or_path /root/LLaMA-Factory/output/qwencoder-sft \
  --dataset merged_1000_for_infer.json \
  --dataset_dir data \
  --template qwen \
  --save_name code_train_10k_predictions.jsonl \
  --max_new_tokens 256

3. 运行效果

相关推荐
bluebonnet273 天前
【agent开发】部署LLM(一)
python·llama
阿牛大牛中4 天前
LLaDa——基于 Diffusion 的大语言模型 打平 LLama 3
人工智能·语言模型·llama
Lilith的AI学习日记4 天前
【AI面试秘籍】| 第25期:RAG的关键痛点及解决方案深度解析
人工智能·深度学习·机器学习·chatgpt·aigc·llama
LChuck6 天前
【大模型微调】魔搭社区GPU进行LLaMA-Factory微调大模型自我认知
人工智能·语言模型·自然语言处理·nlp·llama·魔搭社区·modelscope
燕双嘤6 天前
Fine-tuning:微调技术,训练方式,LLaMA-Factory,ms-swift
llama
装不满的克莱因瓶9 天前
【小白AI教程】大模型知识扫盲通识
人工智能·数学建模·ai·大模型·llm·llama·rag
TGITCIC11 天前
英伟达破局1000 Token/秒!Llama 4以光速重塑AI推理边界
人工智能·大模型·llama·英伟达·大模型速度·ai赛道·大模型基座
天天爱吃肉821812 天前
【 大模型技术驱动智能网联汽车革命:关键技术解析与未来趋势】
语言模型·汽车·llama
Lilith的AI学习日记15 天前
【AI面试秘籍】| 第17期:MoE并行策略面试全攻略:从理论到调参的降维打击指南
人工智能·python·面试·职场和发展·llama