作业:
kaggle找到一个图像数据集,用cnn网络进行训练并且用grad-cam做可视化
进阶:并拆分成多个文件
选取Kaggle上的CIFAR-10数据集进行CNN训练,并使用Grad-CAM进行可视化,代码将拆分为多个文件以保持模块化。CIFAR-10是一个包含60,000张32x32彩色图像的数据集,分为10个类别。
项目结构
cifar10_cnn_gradcam/
├── data_loader.py # 数据加载和预处理
├── model.py # CNN模型定义
├── gradcam.py # Grad-CAM实现
├── train.py # 模型训练逻辑
├── visualize.py # 可视化Grad-CAM结果
├── main.py # 主执行脚本
└── requirements.txt # 依赖库
1. 数据加载(data_loader.py)
此文件负责加载和预处理CIFAR-10数据集,并进行训练、验证、测试集划分。
import tensorflow as tf
from sklearn.model_selection import train_test_split
def load_cifar10_data():
# 加载CIFAR-10数据集
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.cifar10.load_data()
# 归一化像素值到[0, 1]
x_train = x_train.astype('float32') / 255.0
x_test = x_test.astype('float32') / 255.0
# 将训练集进一步拆分为训练和验证集(80%训练,20%验证)
x_train, x_val, y_train, y_val = train_test_split(
x_train, y_train, test_size=0.2, random_state=42
)
# 类名
class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer',
'dog', 'frog', 'horse', 'ship', 'truck']
return (x_train, y_train), (x_val, y_val), (x_test, y_test), class_names
2. 模型定义 (model.py)
此文件定义一个简单的CNN模型,适合CIFAR-10分类任务。
import tensorflow as tf
from tensorflow.keras import layers, models
def build_cnn_model():
model = models.Sequential([
layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3), padding='same'),
layers.MaxPooling2D((2, 2)),
layers.Conv2D(64, (3, 3), activation='relu', padding='same'),
layers.MaxPooling2D((2, 2)),
layers.Conv2D(128, (3, 3), activation='relu', padding='same'),
layers.MaxPooling2D((2, 2)),
layers.Flatten(),
layers.Dense(128, activation='relu'),
layers.Dropout(0.5),
layers.Dense(10, activation='softmax')
])
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
return model
3. Grad-CAM实现 (gradcam.py)
此文件实现Grad-CAM算法,用于生成CNN的注意力热图。
import tensorflow as tf
import numpy as np
import cv2
class GradCAM:
def __init__(self, model, layer_name):
self.model = model
self.layer_name = layer_name
self.grad_model = tf.keras.models.Model(
[model.inputs], [model.get_layer(layer_name).output, model.output]
)
def generate_heatmap(self, image, class_idx):
image = tf.cast(image, tf.float32)
with tf.GradientTape() as tape:
conv_output, predictions = self.grad_model(image)
loss = predictions[:, class_idx]
grads = tape.gradient(loss, conv_output)
pooled_grads = tf.reduce_mean(grads, axis=(0, 1, 2))
conv_output = conv_output[0]
heatmap = tf.reduce_mean(tf.multiply(conv_output, pooled_grads), axis=-1)
heatmap = tf.maximum(heatmap, 0) / tf.math.reduce_max(heatmap)
return heatmap.numpy()
def superimpose_heatmap(self, image, heatmap, alpha=0.4):
heatmap = cv2.resize(heatmap, (image.shape[1], image.shape[0]))
heatmap = np.uint8(255 * heatmap)
heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET)
image = np.uint8(255 * image)
superimposed_img = heatmap * alpha + image
superimposed_img = np.clip(superimposed_img, 0, 255).astype(np.uint8)
return superimposed_img
4. 模型训练 (train.py)
此文件包含训练逻辑,使用数据增强以提高模型鲁棒性。
import tensorflow as tf
from tensorflow.keras import layers
from model import build_cnn_model
def train_model(x_train, y_train, x_val, y_val, epochs=25, batch_size=32):
model = build_cnn_model()
# 数据增强
data_augmentation = tf.keras.Sequential([
layers.RandomFlip("horizontal"),
layers.RandomRotation(0.1),
layers.RandomZoom(0.1),
])
# 训练模型
history = model.fit(
data_augmentation(x_train), y_train,
validation_data=(x_val, y_val),
epochs=epochs,
batch_size=batch_size,
verbose=1
)
model.save('cifar10_cnn_model.h5')
return model, history
5. 可视化Grad-CAM结果 (visualize.py)
此文件负责生成和保存Grad-CAM可视化结果。
import numpy as np
import matplotlib.pyplot as plt
from gradcam import GradCAM
def visualize_gradcam(model, x_test, y_test, class_names, num_images=5):
gradcam = GradCAM(model, layer_name='conv2d_2') # 选择最后一层卷积层
plt.figure(figsize=(15, 10))
for i in range(num_images):
img = x_test[i:i+1]
true_label = y_test[i][0]
pred = model.predict(img)
pred_label = np.argmax(pred, axis=1)[0]
# 生成热图
heatmap = gradcam.generate_heatmap(img, pred_label)
superimposed_img = gradcam.superimpose_heatmap(img[0], heatmap)
# 可视化
plt.subplot(num_images, 3, i*3 + 1)
plt.imshow(img[0])
plt.title(f'True: {class_names[true_label]}')
plt.axis('off')
plt.subplot(num_images, 3, i*3 + 2)
plt.imshow(heatmap, cmap='jet')
plt.title('Heatmap')
plt.axis('off')
plt.subplot(num_images, 3, i*3 + 3)
plt.imshow(superimposed_img)
plt.title(f'Pred: {class_names[pred_label]}')
plt.axis('off')
plt.tight_layout()
plt.savefig('gradcam_visualization.png')
plt.close()
6. 主执行脚本 (main.py)
此文件协调整个流程,调用其他模块执行数据加载、训练和可视化。
from data_loader import load_cifar10_data
from train import train_model
from visualize import visualize_gradcam
def main():
# 加载数据
(x_train, y_train), (x_val, y_val), (x_test, y_test), class_names = load_cifar10_data()
# 训练模型
model, history = train_model(x_train, y_train, x_val, y_val, epochs=25, batch_size=32)
# 可视化Grad-CAM
visualize_gradcam(model, x_test, y_test, class_names, num_images=5)
# 评估模型
test_loss, test_acc = model.evaluate(x_test, y_test, verbose=0)
print(f"Test accuracy: {test_acc:.4f}")
if __name__ == "__main__":
main()
7. 依赖文件 (requirements.txt)
列出项目所需的Python库。
tensorflow==2.10.0 numpy scikit-learn matplotlib opencv-python
@浙大疏锦行