力提示(force prompting)的新方法

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领域的领跑者。点击订阅,与未来同行! 订阅:https://rengongzhineng.io/

布朗大学与DeepMind的研究团队最近展示了一项名为"力提示(force prompting)"的新方法,该方法允许生成式视频模型在无需依赖3D建模或物理引擎的情况下,通过模拟"力"的作用来生成逼真的视频运动效果。

所谓"力提示",即研究人员通过人工设定方向与强度的力向量,引导AI生成运动。模型可以处理两种类型的力:一种是作用于整个场景的"全局力"(如风),另一种是针对特定点的"局部力"(如轻敲物体)。这些力被表示为向量场,并被直接输入至视频生成系统,从而转化为自然的运动表现。

本研究基于CogVideoX-5B-I2V视频模型,并整合了ControlNet模块以处理物理控制信号,整个系统以Transformer架构为基础,可生成每段49帧的视频。训练仅耗时一天,使用了四张Nvidia A100显卡。

在训练阶段,研究人员采用了完全合成的数据集:包括1.5万段不同风速下旗帜飘动的视频,用于训练对全局风力的响应;1.2万段滚球视频和1.1万段花朵因撞击而晃动的视频,则用于训练局部力的处理。每个训练样本都包括文本提示、初始图像和一个代表力的向量场(或移动信号),这些三维模拟力被投影到二维图像坐标中。研究人员还对背景、光照、摄像机角度和力的方向进行随机化,增强模型泛化能力。

尽管数据量有限,模型依然展现出较强的泛化能力。例如,它能分辨轻物体比重物体更易被推动,还能识别满的洗衣篮比空的移动得慢。这种"直觉物理"(intuitive physics)能力是在没有真实物理模拟的条件下学到的。

在人类主观评估中,"力提示"方法优于文本描述或运动路径控制等传统方式,甚至在运动匹配度与现实感方面超过了使用真实物理模拟的PhysDreamer模型(尽管后者图像质量更高)。消融实验进一步显示,训练数据的多样性对于模型识别力的方位与强度至关重要。若缺乏多样背景或文本中缺少与物理相关的词汇,模型表现显著下降。

值得注意的是,模型将物体视为整体单位:即使只是某个部位受力,整个物体都会运动。同时,模型还能够在生成视频过程中保留原图中的风格特征,如光照和景深。

不过研究人员也指出,该方法并不能完全替代高精度物理仿真。在复杂场景中,模型有时仍会出错,比如烟雾忽略风的作用,或人体手臂像布一样摆动。然而,作为一种高效手段,"力提示"为AI生成视频注入了具有物理可信度的动态表现。

DeepMind首席执行官Demis Hassabis近期也强调,像Veo 3这样的AI视频模型正在逐步理解物理规律。他认为,这是AI从图像处理迈向对世界物理结构建模的重要一步,也将推动更具通用性AI系统的发展,使其能通过模拟环境中的经验学习,而不再仅仅依赖于静态数据。

相关推荐
归去_来兮4 分钟前
知识图谱技术概述
大数据·人工智能·知识图谱
就是有点傻7 分钟前
VM图像处理之图像二值化
图像处理·人工智能·计算机视觉
行云流水剑15 分钟前
【学习记录】深入解析 AI 交互中的五大核心概念:Prompt、Agent、MCP、Function Calling 与 Tools
人工智能·学习·交互
love530love23 分钟前
【笔记】在 MSYS2(MINGW64)中正确安装 Rust
运维·开发语言·人工智能·windows·笔记·python·rust
A林玖28 分钟前
【机器学习】主成分分析 (PCA)
人工智能·机器学习
Jamence32 分钟前
多模态大语言模型arxiv论文略读(108)
论文阅读·人工智能·语言模型·自然语言处理·论文笔记
tongxianchao33 分钟前
双空间知识蒸馏用于大语言模型
人工智能·语言模型·自然语言处理
苗老大35 分钟前
MMRL: Multi-Modal Representation Learning for Vision-Language Models(多模态表示学习)
人工智能·学习·语言模型
中达瑞和-高光谱·多光谱1 小时前
中达瑞和SHIS高光谱相机在黑色水彩笔墨迹鉴定中的应用
人工智能·数码相机
F_D_Z1 小时前
8K样本在DeepSeek-R1-7B模型上的复现效果
人工智能·deepseek·deepseek-r1-7b