使用scheduler-plugins实现自定义调度器

使用scheduler-plugins实现自定义调度器

一、环境说明

开发环境 部署环境
操作系统 Windows10 Centos7.9
Go版本 go version go1.24.2 windows/amd64 go version go1.23.6 linux/amd64
插件版本 Master分支
Docker版本 Docker version 26.1.4, build 5650f9b
k8s版本 v1.28.0 (minikube)

补充说明:

k8s环境是由minikube创建,CRI为docker,如果CRI为Containerd,也不影响,后面会说明如何部署。

二、开发

本次开发是在scheduler-plugins源码基础上进行开发。

通过上图可以看到,Filter和Score是两个核心,一般开发也是围绕着Filter和Score。

首先需要把scheduler-plugins的源码下载到本地,直接使用git进行拉取即可。

shell 复制代码
git clone https://github.com/kubernetes-sigs/scheduler-plugins.git

当然如果对版本有特定要求,请根据官方提供的readme进行分支切换。

插件的代码都放在pkg目录下, 现在需要自定义一个插件,当然也是在pkg目录下进行开发。

pkg目录下创建一个新的目录,比如叫prefernode,在prefernode目录下创建创建prefernode.go文件。

接下来就可以在prefernode.go里编写自定义调度器的核心逻辑了。

假如现在想让所有使用自定义调度器的pod都调度到指定的某个节点上,这里直接实现Score。

go 复制代码
package prefernode1

import (
	"context"
	v1 "k8s.io/api/core/v1"
	"k8s.io/kubernetes/pkg/scheduler/framework"
	"k8s.io/apimachinery/pkg/runtime"
	"k8s.io/klog/v2"
)

const Name = "PreferNode"

type PreferNode struct {
	handle framework.Handle
}

func (p *PreferNode) Name() string {
	return Name
}

func (p *PreferNode) Score(_ context.Context, _ *framework.CycleState, pod *v1.Pod, nodeName string) (int64, *framework.Status) {
	klog.V(5).Infof("Scoring pod %s on node %s", pod.Name, nodeName)
	if nodeName == "minikube-m03" {
		return 100, nil
	}
	return 0, nil
}

func (p *PreferNode) ScoreExtensions() framework.ScoreExtensions {
	return nil
}

func New(_ context.Context, _ runtime.Object, _ framework.Handle) (framework.Plugin, error) {
	return &PreferNode{}, nil
}

以上代码,已经实现了具体需求,将所有使用我们自定义插件的Pod都调度到某个节点上。这里指定的是"minikube-m03"。

插件核心代码写好了,还需要进行注册,让框架知道我们是现在自定义插件。

返回项目根目录,进入到cmd/scheduler,编辑main.go,在command中进行注册。

go 复制代码
func main() {
	// Register prefernode1 plugins to the scheduler framework.
	// Later they can consist of scheduler profile(s) and hence
	// used by various kinds of workloads.
	command := app.NewSchedulerCommand(
		app.WithPlugin(capacityscheduling.Name, capacityscheduling.New),
		app.WithPlugin(coscheduling.Name, coscheduling.New),
		app.WithPlugin(loadvariationriskbalancing.Name, loadvariationriskbalancing.New),
		app.WithPlugin(networkoverhead.Name, networkoverhead.New),
		app.WithPlugin(topologicalsort.Name, topologicalsort.New),
		app.WithPlugin(noderesources.AllocatableName, noderesources.NewAllocatable),
		app.WithPlugin(noderesourcetopology.Name, noderesourcetopology.New),
		app.WithPlugin(preemptiontoleration.Name, preemptiontoleration.New),
		app.WithPlugin(targetloadpacking.Name, targetloadpacking.New),
		app.WithPlugin(lowriskovercommitment.Name, lowriskovercommitment.New),
		app.WithPlugin(sysched.Name, sysched.New),
		app.WithPlugin(peaks.Name, peaks.New),
		// Sample plugins below.
		// app.WithPlugin(crossnodepreemption.Name, crossnodepreemption.New),
		app.WithPlugin(podstate.Name, podstate.New),
		app.WithPlugin(qos.Name, qos.New),
        // 这是我们自定义的插件
		app.WithPlugin(prefernode.Name, prefernode.New),
	)

	code := cli.Run(command)
	os.Exit(code)
}

到此,开发完成。

如果你觉得上面的实现比较简陋,当然了,这里也提供一个同时实现Filter和Score的插件。

go 复制代码
package prefernode

import (
	"k8s.io/kubernetes/pkg/scheduler/framework"
	"context"
	"k8s.io/api/core/v1"
	"k8s.io/klog/v2"
	"fmt"
	"sort"
	"k8s.io/apimachinery/pkg/runtime"
)

const Name = "PreferNode"

type PreferNode struct {
	handler framework.Handle
}

func (p *PreferNode) Name() string {
	return Name
}

// Filter 实现预选逻辑
func (p *PreferNode) Filter(ctx context.Context, state *framework.CycleState, pod *v1.Pod, nodeInfo *framework.NodeInfo) *framework.Status {
	if nodeInfo == nil || nodeInfo.Node() == nil {
		klog.Error("@@@ node not found @@@")
		return framework.NewStatus(framework.Error, "node not found")
	}

	node := nodeInfo.Node()
	klog.V(4).Infof("prefernode filter pod %s/%s:%s", pod.Namespace, pod.Name, node.Name)

	// 检查节点是否可调度
	if node.Spec.Unschedulable {
		klog.V(4).Infof("Node %s is unschedulable", node.Name)
		return framework.NewStatus(framework.Unschedulable, "node is unschedulable")
	}

	// 检查节点是否有足够的资源
	podRequest := calculatePodResourceRequest(pod)
	nodeAllocatable := node.Status.Allocatable

	cpuAvailable := nodeAllocatable.Cpu().MilliValue()
	memAvailable := nodeAllocatable.Memory().MilliValue()

	if cpuAvailable < podRequest.cpu {
		klog.V(4).Infof("Node %s doesn't have enough CPU: required %d, available: %d", node.Name, podRequest.cpu, cpuAvailable)
		return framework.NewStatus(framework.Unschedulable, "Insufficient CPU")
	}

	if memAvailable < podRequest.memory {
		klog.V(4).Infof("Node %s doesn't have enough Memory: required %d, available: %d", node.Name, podRequest.memory, memAvailable)
		return framework.NewStatus(framework.Unschedulable, "Insufficient Memory")
	}

	// 检查节点标签是否匹配
	if pod.Spec.NodeSelector != nil {
		for key, value := range pod.Spec.NodeSelector {
			nodeValue, exists := node.Labels[key]
			if !exists || nodeValue != value {
				klog.V(4).Infof("Node %s does not have label %s=%s", node.Name, key, value)
				return framework.NewStatus(framework.Unschedulable, "Insufficient Label")
			}
		}
	}

	klog.V(4).Infof("Node %s passed all filters for pod %s/%s", node.Name, pod.Namespace, pod.Name)
	return framework.NewStatus(framework.Success, "")
}

func (p *PreferNode) Score(ctx context.Context, state *framework.CycleState, pod *v1.Pod, nodeName string) (int64, *framework.Status) {
	klog.V(4).Infof("Scoring pod %s/%s on node %s", pod.Namespace, pod.Name, nodeName)

	nodeInfo, err := p.handler.SnapshotSharedLister().NodeInfos().Get(nodeName)
	if err != nil {
		klog.Errorf("Error getting node %s from snapshot: %v", nodeName, err)
		return 0, framework.NewStatus(framework.Error, fmt.Sprintf("getting node %s from snapshot: %v", nodeName, err))
	}

	node := nodeInfo.Node()

	// 基础分 - 考虑节点负载和可用资源
	score := int64(0)

	// 1、计算CPU得分 - 优先选择CPU资源充足的节点
	cpuCapacity := node.Status.Capacity.Cpu().MilliValue()
	cpuAllocatable := node.Status.Allocatable.Cpu().MilliValue()
	cpuUsed := cpuCapacity - cpuAllocatable

	// 计算cpu使用率
	var cpuUtilization float64
	if cpuCapacity > 0 {
		cpuUtilization = float64(cpuUsed) / float64(cpuCapacity)
	}

	// CPU得分,使用率越低得分越高,最高40分
	cpuScore := int64((1 - cpuUtilization) * 40)

	// 2、计算内存得分 - 优先选择内存资源充足的节点
	memCapacity := node.Status.Capacity.Memory().Value()
	memAllocatable := node.Status.Allocatable.Memory().Value()
	memUsed := memCapacity - memAllocatable

	// 计算内存使用率
	var memUtilization float64
	if memCapacity > 0 {
		memUtilization = float64(memUsed) / float64(memCapacity)
	}

	// 内存得分, 使用率越低得分越高,最高40分
	memScore := int64((1 - memUtilization) * 40)

	// 2、节点标签偏好得分
	labelScore := int64(0)

	// 检查是否有特定角色标签
	if value, exits := node.Labels["kubernetes.io/role"]; exits && value == "worker" {
		labelScore += 10
	}

	if nodeName == "minikube-m03" {
		labelScore += 10
	}

	// 计算总分
	score = cpuScore + memScore + labelScore

	klog.V(3).Infof("Score for pod %s/%s on node %s: %d (CPU: %d, Memory: %d, Labels: %d)",
		pod.Namespace, pod.Name, nodeName, score, cpuScore, memScore, labelScore)

	return score, nil
}

// ScoreExtensions 返回扩展接口
func (p *PreferNode) ScoreExtensions() framework.ScoreExtensions {
	return p
}

// NormalizeScore 实现分数归一化
func (p *PreferNode) NormalizeScore(ctx context.Context, state *framework.CycleState, pod *v1.Pod, scores framework.NodeScoreList) *framework.Status {
	// 找出最高分和最低分
	var highest int64
	var lowest = framework.MaxNodeScore

	for _, nodeScore := range scores {
		if nodeScore.Score > highest {
			highest = nodeScore.Score
		}
		if nodeScore.Score < lowest {
			lowest = nodeScore.Score
		}
	}

	klog.V(4).Infof("Score range for pod %s/%s: [%d, %d]", pod.Namespace, pod.Name, lowest, highest)

	// 如果所有节点得分相同,则不需要归一化
	if highest == lowest{
		klog.V(4).Infof("No need to normalize scores as all nodes have the same score")
		return nil
	}

	// 归一化分数到0-100范围
	for i := range scores{
		scores[i].Score = framework.MaxNodeScore * (scores[i].Score - lowest) / (highest - lowest)
		klog.V(4).Infof("Normalized score for node %s:%d",scores[i].Name,scores[i].Score)
	}

	// 按分数排序,记录结果
	sortedScores := make(framework.NodeScoreList, len(scores))
	copy(sortedScores, scores)
	sort.Slice(sortedScores, func(i,j int) bool {
		return sortedScores[i].Score > sortedScores[j].Score
	})

	klog.V(3).Infof("Final scores for pod %s/%s",pod.Namespace,pod.Name)
	for i, nodeScroe := range sortedScores {
		klog.V(5).Infof("@@@ %d. Node %s: %d",i+1, nodeScroe.Name,nodeScroe.Score)
	}

	return nil
}

// 资源请求结构体
type resourceRequest struct {
	cpu    int64
	memory int64
}

// 计算Pod资源请求
func calculatePodResourceRequest(pod *v1.Pod) resourceRequest {
	result := resourceRequest{}

	for _, container := range pod.Spec.Containers {
		if container.Resources.Requests != nil {
			result.cpu += container.Resources.Requests.Cpu().MilliValue()
			result.memory += container.Resources.Requests.Memory().Value()
		}
	}

	// 如果没有明确指定资源请求,使用默认值
	if result.cpu == 0 {
		result.cpu = 100 // 默认100m CPU
	}
	if result.memory == 0 {
		result.memory = 256 * 1024 * 1024 // 默认256Mi
	}

	return result
}

// New 创建一个新的PreferNode插件实例
func New(_ context.Context, _ runtime.Object, h framework.Handle) (framework.Plugin, error) {
	return &PreferNode{
		handler: h,
	}, nil
}

三、部署

开发完成后,在编译环境中进行编译。

进入到scheduler-plugins目录下,直接运行make

shell 复制代码
# make
go build -ldflags '-X k8s.io/component-base/version.gitVersion=v0.32.5 -w' -o bin/controller cmd/controller/controller.go
go build -ldflags '-X k8s.io/component-base/version.gitVersion=v0.32.5 -w' -o bin/kube-scheduler cmd/scheduler/main.go

可以看到编译好的文件放到了同级的bin/目录下,我们需要使用的是kube-scheduler

现在需要将我们的插件编译成Docker镜像。

dockerfile 复制代码
FROM debian:bullseye-slim
COPY bin/kube-scheduler /usr/local/bin/kube-scheduler
RUN chmod +x /usr/local/bin/kube-scheduler
ENTRYPOINT ["/usr/local/bin/kube-scheduler"]

执行命令进行编译,假如镜像名就叫custom-scheduler:v1.0

shell 复制代码
docker build -t custom-scheduler:v1.0 .

注意,这块需要补充一下,如果集群的容器使用containerd,则需要将docker镜像能让contained使用。

可以直接使用docker将镜像打包成tar,然后使用ctr解包。需要格外注意的是ctr需要指定-n命名空间,不然k8s识别不到。

shell 复制代码
docker save -o image.tar custom-scheduler:v1.0

ctr -n=k8s.io -images import image.tar

或者使用私有仓库。

镜像准备就绪后,就可以进行下一步操作了。将进行部署到k8s集群中。

这里不得不在提k8s环境了,我的环境是minikube起的,并且多节点,所以需要将镜像导入到minikube中,如果你使用的是kind,也需要进行类似的操作。

shell 复制代码
minikube image load custom-scheduler:v1.0

加载完成后,可以使用minikube image ls检查一下。

接下来需要创建configmap,先创建scheduler-config.yaml。注意:如果使用简陋版的,则不需要配置filter。

yaml 复制代码
apiVersion: kubescheduler.config.k8s.io/v1
kind: KubeSchedulerConfiguration
clientConnection:
  kubeconfig: "/etc/kubernetes/kubeconfig"
leaderElection:
  leaderElect: false
profiles:
  - schedulerName: custom-scheduler
    plugins:
      filter:
        enabled:
          - name: PreferNode 
      score:
        enabled:
          - name: PreferNode   

同时需要准备kubeconfig文件,这个文件可以在.kube下找到。同样为了方便,生成到当前目录下。

shell 复制代码
kubectl config view --flatten --minify > scheduler.kubeconfig

现在就可以创建configMap和Secret了。(其实完全可以创建两个configMap)

创建configMap和secret。

shell 复制代码
kubectl create configmap scheduler-config \
  --from-file=scheduler-config.yaml=scheduler-config.yaml \
  -n kube-system

kubectl create secret generic scheduler-kubeconfig \
  --from-file=kubeconfig=scheduler.kubeconfig \
  -n kube-system

RBAC准入这块也需要进行设置。

shell 复制代码
apiVersion: v1
kind: ServiceAccount
metadata:
  name: custom-scheduler
  namespace: kube-system
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
  name: custom-scheduler-rolebinding
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: system:kube-scheduler
subjects:
  - kind: ServiceAccount
    name: custom-scheduler
    namespace: kube-system

到此为止,部署的准备工作基本完成了,接下来就是部署自定义调度器了。

shell 复制代码
apiVersion: apps/v1
kind: Deployment
metadata:
  name: custom-scheduler
  namespace: kube-system
spec:
  replicas: 1
  selector:
    matchLabels:
      component: custom-scheduler
  template:
    metadata:
      labels:
        component: custom-scheduler
    spec:
      serviceAccountName: custom-scheduler
      containers:
        - name: custom-scheduler
          image: docker.io/library/custom-scheduler:v1.0
          args:
            - --config=/etc/kubernetes/scheduler-config.yaml
            - --v=5
          volumeMounts:
            - name: scheduler-config
              mountPath: /etc/kubernetes/scheduler-config.yaml
              subPath: scheduler-config.yaml
            - name: scheduler-kubeconfig
              mountPath: /etc/kubernetes/kubeconfig
              subPath: kubeconfig
      volumes:
        - name: scheduler-config
          configMap:
            name: scheduler-config
        - name: scheduler-kubeconfig
          secret:
            secretName: scheduler-kubeconfig

部署完成后,查看pod的运行状况。

四、测试

这里提交一个简单的pod进行测试

shell 复制代码
apiVersion: v1
kind: Pod
metadata:
  name: test-pod
spec:
  schedulerName: custom-scheduler
  containers:
  - name: nginx
    image: nginx:1.17.1

查看,可以发现pod被调度到m03节点上了。

shell 复制代码
kubectl get pod -o wide
NAME       READY   STATUS    RESTARTS   AGE   IP             NODE           NOMINATED NODE   READINESS GATES
test-pod   1/1     Running   0          37m   10.96.151.14   minikube-m03   <none>           <none>

同样可以查看下自定义调度器的日志。可以看到03节点得了100分。

shell 复制代码
...
I0607 08:46:21.638574       1 prefernode.go:31] prefernode filter pod default/test-pod:minikube
I0607 08:46:21.638587       1 prefernode.go:67] Node minikube passed all filters for pod default/test-pod
I0607 08:46:21.638597       1 prefernode.go:31] prefernode filter pod default/test-pod:minikube-m02
I0607 08:46:21.638603       1 prefernode.go:67] Node minikube-m02 passed all filters for pod default/test-pod
I0607 08:46:21.638610       1 prefernode.go:31] prefernode filter pod default/test-pod:minikube-m03
I0607 08:46:21.638614       1 prefernode.go:67] Node minikube-m03 passed all filters for pod default/test-pod
I0607 08:46:21.638759       1 prefernode.go:72] Scoring pod default/test-pod on node minikube
I0607 08:46:21.638770       1 prefernode.go:128] Score for pod default/test-pod on node minikube: 80 (CPU: 40, Memory: 40, Labels: 0)
I0607 08:46:21.638782       1 prefernode.go:72] Scoring pod default/test-pod on node minikube-m02
I0607 08:46:21.638787       1 prefernode.go:128] Score for pod default/test-pod on node minikube-m02: 80 (CPU: 40, Memory: 40, Labels: 0)
I0607 08:46:21.638797       1 prefernode.go:72] Scoring pod default/test-pod on node minikube-m03
I0607 08:46:21.638808       1 prefernode.go:128] Score for pod default/test-pod on node minikube-m03: 90 (CPU: 40, Memory: 40, Labels: 10)
I0607 08:46:21.638838       1 prefernode.go:154] Score range for pod default/test-pod: [80, 90]
I0607 08:46:21.638844       1 prefernode.go:165] Normalized score for node minikube:0
I0607 08:46:21.638847       1 prefernode.go:165] Normalized score for node minikube-m02:0
I0607 08:46:21.638850       1 prefernode.go:165] Normalized score for node minikube-m03:100
I0607 08:46:21.638857       1 prefernode.go:175] Final scores for pod default/test-pod
I0607 08:46:21.638861       1 prefernode.go:177] @@@ 1. Node minikube-m03: 100
I0607 08:46:21.638864       1 prefernode.go:177] @@@ 2. Node minikube: 0
I0607 08:46:21.638867       1 prefernode.go:177] @@@ 3. Node minikube-m02: 0

...
相关推荐
DemonAvenger3 分钟前
Go sync.Pool 最佳实践:复用对象降低 GC 压力的技术文章
性能优化·架构·go
程序员爱钓鱼7 分钟前
Go 并发编程基础:select 多路复用
后端·google·go
藥瓿锻44 分钟前
2024 CKA题库+详尽解析| 15、备份还原Etcd
linux·运维·数据库·docker·容器·kubernetes·cka
程序员麻辣烫1 小时前
Go的优雅退出
后端·go
zhuyasen2 小时前
深度定制 protoc-gen-go:实现结构体字段命名风格控制
后端·go·protobuf
陈陈CHENCHEN11 小时前
【Kubernetes】K8s 之 ETCD - 恢复备份
kubernetes
叶落闲庭12 小时前
【k8s】k8s集群搭建
云原生·容器·kubernetes
藥瓿亭12 小时前
K8S认证|CKS题库+答案| 3. 默认网络策略
运维·ubuntu·docker·云原生·容器·kubernetes·cks
xyhshen12 小时前
k8s下离线搭建elasticsearch
elasticsearch·容器·kubernetes
椰汁菠萝13 小时前
k8s集群安装坑点汇总
云原生·容器·kubernetes