6.11打卡

知识点回顾:

1.随机张量的生成:torch.randn函数

2.卷积和池化的计算公式(可以不掌握,会自动计算的)

3.pytorch的广播机制:加法和乘法的广播机制

ps:numpy运算也有类似的广播机制,基本一致

作业:自己多借助ai举几个例子帮助自己理解即可

复制代码
import torch

# 生成一个2x3的随机张量,元素来自标准正态分布
a = torch.randn(2, 3)
print("随机张量a:\n", a)

# 生成一个3维随机张量,形状为(2,2,3)
b = torch.randn(2, 2, 3)
print("\n3维随机张量b:\n", b)

import torch.nn as nn

# 输入张量 (batch_size=1, channels=1, height=5, width=5)
input = torch.randn(1, 1, 5, 5)

# 卷积层示例
conv = nn.Conv2d(1, 1, kernel_size=3, stride=1, padding=0)
output = conv(input)
print(f"\n卷积前形状: {input.shape}, 卷积后形状: {output.shape}")

# 最大池化示例
pool = nn.MaxPool2d(kernel_size=2, stride=2)
output = pool(input)
print(f"池化前形状: {input.shape}, 池化后形状: {output.shape}")

# 示例1:张量与标量
a = torch.tensor([1.0, 2.0, 3.0])
b = 2.0
print("\n张量加标量:", a + b)  # [3.0, 4.0, 5.0]

# 示例2:不同形状张量
c = torch.tensor([[1, 2, 3], [4, 5, 6]])  # 形状(2,3)
d = torch.tensor([10, 20, 30])            # 形状(3,)
print("\n不同形状张量相加:\n", c + d)  # [[11,22,33], [14,25,36]]

# 示例3:乘法广播
e = torch.tensor([[1], [2], [3]])  # 形状(3,1)
f = torch.tensor([4, 5])           # 形状(2,)
print("\n乘法广播结果:\n", e * f)  # [[4,5], [8,10], [12,15]]

@浙大疏锦行

相关推荐
编程指南针43 分钟前
2026新选题-基于Python的老年病医疗数据分析系统的设计与实现(数据采集+可视化分析)
开发语言·python·病历分析·医疗病历分析
reasonsummer2 小时前
【办公类-116-01】20250929家长会PPT(Python快速批量制作16:9PPT相册,带文件名,照片横版和竖版)
java·数据库·python·powerpoint
拉姆哥的小屋2 小时前
基于提示学习的多模态情感分析系统:从MULT到PromptModel的华丽升级
python·深度学习·学习
蒋星熠2 小时前
爬虫与自动化技术深度解析:从数据采集到智能运维的完整实战指南
运维·人工智能·爬虫·python·深度学习·机器学习·自动化
大翻哥哥5 小时前
Python 2025:异步革命与AI驱动下的开发新范式
开发语言·人工智能·python
hhzz5 小时前
Pythoner 的Flask项目实践-在web页面实现矢量数据转换工具集功能(附源码)
前端·python·flask
学习的学习者5 小时前
CS课程项目设计19:基于DeepFace人脸识别库的课堂签到系统
人工智能·python·深度学习·人脸识别算法
悠哉悠哉愿意6 小时前
【数据结构与算法学习笔记】双指针
数据结构·笔记·python·学习·算法
MoRanzhi12036 小时前
5. Pandas 缺失值与异常值处理
数据结构·python·数据挖掘·数据分析·pandas·缺失值处理·异常值处理
程序员的奶茶馆7 小时前
Python 字典速查:键值对操作与高频函数
python·面试