6.11打卡

知识点回顾:

1.随机张量的生成:torch.randn函数

2.卷积和池化的计算公式(可以不掌握,会自动计算的)

3.pytorch的广播机制:加法和乘法的广播机制

ps:numpy运算也有类似的广播机制,基本一致

作业:自己多借助ai举几个例子帮助自己理解即可

复制代码
import torch

# 生成一个2x3的随机张量,元素来自标准正态分布
a = torch.randn(2, 3)
print("随机张量a:\n", a)

# 生成一个3维随机张量,形状为(2,2,3)
b = torch.randn(2, 2, 3)
print("\n3维随机张量b:\n", b)

import torch.nn as nn

# 输入张量 (batch_size=1, channels=1, height=5, width=5)
input = torch.randn(1, 1, 5, 5)

# 卷积层示例
conv = nn.Conv2d(1, 1, kernel_size=3, stride=1, padding=0)
output = conv(input)
print(f"\n卷积前形状: {input.shape}, 卷积后形状: {output.shape}")

# 最大池化示例
pool = nn.MaxPool2d(kernel_size=2, stride=2)
output = pool(input)
print(f"池化前形状: {input.shape}, 池化后形状: {output.shape}")

# 示例1:张量与标量
a = torch.tensor([1.0, 2.0, 3.0])
b = 2.0
print("\n张量加标量:", a + b)  # [3.0, 4.0, 5.0]

# 示例2:不同形状张量
c = torch.tensor([[1, 2, 3], [4, 5, 6]])  # 形状(2,3)
d = torch.tensor([10, 20, 30])            # 形状(3,)
print("\n不同形状张量相加:\n", c + d)  # [[11,22,33], [14,25,36]]

# 示例3:乘法广播
e = torch.tensor([[1], [2], [3]])  # 形状(3,1)
f = torch.tensor([4, 5])           # 形状(2,)
print("\n乘法广播结果:\n", e * f)  # [[4,5], [8,10], [12,15]]

@浙大疏锦行

相关推荐
胡耀超13 分钟前
标签体系设计与管理:从理论基础到智能化实践的综合指南
人工智能·python·深度学习·数据挖掘·大模型·用户画像·语义分析
博观而约取40 分钟前
Django 数据迁移全解析:makemigrations & migrate 常见错误与解决方案
后端·python·django
熊猫钓鱼>_>1 小时前
用Python解锁图像处理之力:从基础到智能应用的深度探索
开发语言·图像处理·python
蛋仔聊测试1 小时前
Playwright 中特定的 Fixtures
python
蹦蹦跳跳真可爱5892 小时前
Python----大模型(使用api接口调用大模型)
人工智能·python·microsoft·语言模型
好开心啊没烦恼2 小时前
Python 数据分析:numpy,抽提,整数数组索引与基本索引扩展(元组传参)。听故事学知识点怎么这么容易?
开发语言·人工智能·python·数据挖掘·数据分析·numpy·pandas
清幽竹客2 小时前
Day 3:Python模块化、异常处理与包管理实战案例
python
菜包eo3 小时前
二维码驱动的独立站视频集成方案
网络·python·音视频
Yo_Becky3 小时前
【PyTorch】PyTorch预训练模型缓存位置迁移,也可拓展应用于其他文件的迁移
人工智能·pytorch·经验分享·笔记·python·程序人生·其他
yzx9910133 小时前
关于网络协议
网络·人工智能·python·网络协议