过拟合和欠拟合

1 引言

过拟合和欠拟合是机器学习模型训练中两种常见的问题,分别对应模型复杂度过高或过低导致的泛化能力不足现象。以下从定义、原因、表现及解决方法等方面进行系统分析:

**核心区别:**欠拟合是模型"学得太少",而过拟合是模型"死记硬背训练数据但未理解规律"。

2 原因与表现​

2.1 欠拟合

​① 原因​​:

  • 模型复杂度不足(如用线性模型拟合非线性数据);
  • 特征数量少或质量差(如未提取关键特征);
  • 训练数据量不足或噪声过多。

② ​​表现​​:

  • 训练集和测试集上误差均较高,预测结果偏离实际趋势(如分类任务中决策边界过于平滑)。

2.2 过拟合

① 原因:

  • 模型复杂度过高(如高阶多项式、深度神经网络层数过多);
  • 训练数据量少或噪声大;
  • 训练时间过长或未使用正则化。

② ​​表现​​:

  • 训练误差接近0,但测试误差显著升高,模型对噪声敏感(如分类边界不规则波动)。
相关推荐
小鸡吃米…19 分钟前
机器学习面试问题及答案
机器学习
uesowys1 小时前
Apache Spark算法开发指导-Factorization machines classifier
人工智能·算法
人工智能AI技术1 小时前
预训练+微调:大模型的“九年义务教育+专项补课”
人工智能
aircrushin1 小时前
中国多模态大模型历史性突破:智源Emu3自回归统一范式技术深度解读
人工智能
Lsx_1 小时前
前端视角下认识 AI Agent 和 LangChain
前端·人工智能·agent
aiguangyuan1 小时前
使用LSTM进行情感分类:原理与实现剖析
人工智能·python·nlp
Yeats_Liao1 小时前
评估体系构建:基于自动化指标与人工打分的双重验证
运维·人工智能·深度学习·算法·机器学习·自动化
深圳市恒星物联科技有限公司1 小时前
水质流量监测仪:复合指标监测的管网智能感知设备
大数据·网络·人工智能
断眉的派大星2 小时前
均值为0,方差为1:数据的“标准校服”
人工智能·机器学习·均值算法
A尘埃2 小时前
电子厂PCB板焊点缺陷检测(卷积神经网络CNN)
人工智能·神经网络·cnn