码字不易,大佬们请点点关注,谢谢~
一、全局优化与跨函数分析概述
Android Runtime(ART)的全局优化与跨函数分析是提升应用性能的关键技术。全局优化突破单个函数的边界,从程序整体视角对代码进行优化,而跨函数分析则通过分析函数间的调用关系、数据传递和控制流,挖掘潜在的优化机会。二者相互配合,能有效减少冗余计算、优化内存访问、提升指令执行效率。在ART源码中,这些功能主要通过中间表示(IR)、数据流分析、控制流分析等技术实现,涉及art/compiler/
、art/runtime/
等多个核心目录的代码。深入理解其原理,有助于开发者针对性地优化应用,也能为系统性能调优提供理论支持。
二、全局优化与跨函数分析基础架构
2.1 中间表示(IR)体系
ART采用多层中间表示(IR)进行代码处理,从高层抽象逐步向底层机器码过渡,主要包括HIR(High-level IR)、LIR(Low-level IR)和MIR(Machine IR)。在art/compiler/optimizing/
目录下的源码中,HIR作为初始的高级表示,将Dex字节码转换为结构化的控制流图(CFG)和数据流图(DFG)。例如,art/compiler/optimizing/bytecode_translator.cc
中的BytecodeTranslator
类负责将Dex指令逐条转换为HIR指令:
cpp
// BytecodeTranslator类将Dex字节码转换为HIR
class BytecodeTranslator {
public:
HInstruction* TranslateBytecode(HBasicBlock* block, const DexFile::CodeItem* code_item,
uint32_t pc) {
const uint8_t* insn_data = code_item->insns_ + (pc << 1);
uint16_t opcode = DecodeOpcode(insn_data); // 解析Dex操作码
switch (opcode) {
case OPCODE_CONST:
return TranslateConstInstruction(block, insn_data); // 转换常量指令
case OPCODE_INVOKE_VIRTUAL:
return TranslateInvokeInstruction(block, insn_data); // 转换调用指令
// 其他操作码处理...
default:
LOG(FATAL) << "Unsupported opcode: " << opcode;
}
}
};
HIR生成后,会经过一系列优化阶段,逐步转换为LIR和MIR。LIR更接近目标机器架构,引入寄存器分配、指令选择等操作;MIR则完全针对具体硬件,进行最终的代码生成。这种分层设计使得优化过程可以在不同抽象层次上灵活展开,为全局优化和跨函数分析提供了良好的基础。
2.2 优化器与分析器组件
ART的优化流程由多个优化器和分析器协同完成,核心组件包括:
- 数据流分析器(Data Flow Analyzer) :位于
art/compiler/optimizing/data_flow_analysis.cc
,负责分析程序中数据的流动和使用情况,例如常量传播、活跃变量分析等。通过数据流分析,优化器可以确定哪些变量的值在编译时已知,从而进行常量折叠、死代码消除等优化。 - 控制流分析器(Control Flow Analyzer) :在
art/compiler/optimizing/control_flow_analysis.cc
中实现,主要分析程序的控制结构,如循环、条件分支等。通过构建和分析控制流图(CFG),可以识别循环不变代码、预测分支走向,进而优化循环结构和条件判断逻辑。 - 优化器(Optimizer) :如
art/compiler/optimizing/optimizing_compiler.cc
中的OptimizingCompiler
类,整合数据流和控制流分析结果,执行具体的优化操作。这些操作包括函数内联、公共子表达式消除、循环优化等,部分优化需要跨函数分析的支持。
三、数据流分析与全局常量传播
3.1 数据流分析原理
数据流分析是全局优化的基础,它通过在控制流图上传递数据信息,分析变量的定义和使用关系。ART的数据流分析基于迭代算法,在art/compiler/optimizing/data_flow_analysis.cc
中实现了多种数据流分析框架,如到达定值分析(Reaching Definitions Analysis)、活跃变量分析(Live Variables Analysis)。以到达定值分析为例,其核心逻辑如下:
cpp
// 到达定值分析类
class ReachingDefinitionsAnalysis : public DataFlowAnalysis {
public:
ReachingDefinitionsAnalysis(HGraph* graph) : DataFlowAnalysis(graph) {}
void Initialize() {
// 初始化每个基本块的输入和输出集合
for (HBasicBlock* block : graph_->GetBlocks()) {
block->SetInSet(ReachingDefinitionsSet());
block->SetOutSet(ReachingDefinitionsSet());
}
}
void TransferFunction(HBasicBlock* block) {
ReachingDefinitionsSet new_in = UnionAllPredsOut(block); // 合并前驱块的输出
ReachingDefinitionsSet new_out = new_in;
for (HInstruction* inst : block->GetInstructions()) {
if (inst->IsDefinition()) {
new_out.RemoveAllDefinitionsOf(inst->GetDef()); // 移除当前指令定义变量的旧定值
new_out.AddDefinition(inst); // 添加新定值
}
}
block->SetInSet(new_in);
block->SetOutSet(new_out);
}
void Solve() {
bool changed;
do {
changed = false;
for (HBasicBlock* block : graph_->GetBlocks()) {
ReachingDefinitionsSet old_in = block->GetInSet();
TransferFunction(block);
if (old_in != block->GetInSet()) {
changed = true;
}
}
} while (changed);
}
};
通过反复迭代计算每个基本块的输入和输出集合,直到结果收敛,从而确定程序中每个变量的定义在哪些位置可达。
3.2 全局常量传播优化
基于数据流分析的结果,ART可以进行全局常量传播优化。在art/compiler/optimizing/constant_propagation.cc
中,ConstantPropagation
类利用到达定值分析和活跃变量分析的结果,将常量值传播到使用该常量的指令处:
cpp
// 常量传播类
class ConstantPropagation {
public:
ConstantPropagation(HGraph* graph) : graph_(graph) {}
void Run() {
ReachingDefinitionsAnalysis reaching_analysis(graph_);
reaching_analysis.Solve(); // 执行到达定值分析
LiveVariablesAnalysis live_analysis(graph_);
live_analysis.Solve(); // 执行活跃变量分析
for (HBasicBlock* block : graph_->GetBlocks()) {
for (HInstruction* inst : block->GetInstructions()) {
if (inst->IsUse()) {
HValue* operand = inst->GetOperand();
if (operand->IsConstant()) {
// 若操作数为常量,直接替换使用该操作数的指令
ReplaceInstructionWithConstant(inst, operand->AsConstant()->GetValue());
} else {
// 查找操作数的定值指令
HInstruction* def_inst = reaching_analysis.GetDefiningInstruction(operand);
if (def_inst != nullptr && def_inst->IsConstant()) {
// 若定值指令为常量,进行常量传播
ConstantPropagate(inst, def_inst);
}
}
}
}
}
}
};
常量传播可以减少运行时的计算开销,例如将int a = 5 + 3;
在编译时直接计算为int a = 8;
,并将a
的值传播到后续使用它的指令中。
四、控制流分析与循环优化
4.1 控制流分析与循环识别
控制流分析通过构建和分析控制流图(CFG)来理解程序的执行逻辑。在art/compiler/optimizing/control_flow_analysis.cc
中,ControlFlowAnalysis
类负责构建CFG,并识别其中的循环结构:
cpp
// 控制流分析类
class ControlFlowAnalysis {
public:
ControlFlowAnalysis(HGraph* graph) : graph_(graph) {}
void BuildControlFlowGraph() {
for (HBasicBlock* block : graph->GetBlocks()) {
block->ClearPredecessors();
block->ClearSuccessors();
}
for (HBasicBlock* block : graph->GetBlocks()) {
HInstruction* last_inst = block->GetLastInstruction();
if (last_inst->IsBranch()) {
HBranch* branch = last_inst->AsBranch();
if (branch->IsConditional()) {
// 条件分支,添加两个后继块
block->AddSuccessor(branch->GetTrueBlock());
block->AddSuccessor(branch->GetFalseBlock());
} else {
// 无条件分支,添加一个后继块
block->AddSuccessor(branch->GetTargetBlock());
}
} else {
// 非分支指令,后继块为顺序下一块
HBasicBlock* next_block = GetNextBasicBlock(block);
if (next_block != nullptr) {
block->AddSuccessor(next_block);
}
}
for (HBasicBlock* succ : block->GetSuccessors()) {
succ->AddPredecessor(block);
}
}
}
std::vector<LoopInfo> IdentifyLoops() {
std::vector<LoopInfo> loops;
for (HBasicBlock* block : graph->GetBlocks()) {
if (IsLoopHeader(block)) {
LoopInfo loop = BuildLoopInfo(block);
loops.push_back(loop);
}
}
return loops;
}
};
通过遍历基本块和指令,构建CFG中的前驱和后继关系,并通过特定算法(如深度优先搜索)识别循环头和循环体。
4.2 循环优化策略
识别出循环后,ART在art/compiler/optimizing/loop_optimization.cc
中执行多种循环优化策略:
- 循环不变代码外提(Loop Invariant Code Motion) :将循环中不依赖循环变量的代码移动到循环外部,减少重复计算。例如,若循环内存在
int a = 5 + 3;
,且a
的值不随循环变化,则将该语句移到循环外。 - 循环展开(Loop Unrolling) :通过复制循环体代码减少循环控制指令的开销。例如,将
for (int i = 0; i < 4; i++) {... }
展开为四次循环体的顺序执行。 - 强度削弱(Strength Reduction) :将复杂的运算替换为更简单的运算,如将乘法转换为移位操作(
a * 8
转换为a << 3
)。
cpp
// 循环优化类
class LoopOptimization {
public:
LoopOptimization(HGraph* graph) : graph_(graph) {}
void OptimizeLoops() {
ControlFlowAnalysis cfa(graph_);
cfa.BuildControlFlowGraph();
std::vector<LoopInfo> loops = cfa.IdentifyLoops();
for (const LoopInfo& loop : loops) {
PerformLoopInvariantCodeMotion(loop);
PerformLoopUnrolling(loop);
PerformStrengthReduction(loop);
}
}
};
这些优化策略可以显著提升循环的执行效率,减少应用在循环密集型任务中的耗时。
五、函数内联与跨函数优化
5.1 函数内联决策机制
函数内联是跨函数优化的重要手段,它将被调用函数的代码直接插入到调用点,消除函数调用开销,并为进一步优化创造条件。在art/compiler/optimizing/inline_pass.cc
中,InlinePass
类负责决策是否进行函数内联:
cpp
// 函数内联类
class InlinePass {
public:
InlinePass(HGraph* graph, CompilationUnit* unit) : graph_(graph), unit_(unit) {}
bool ShouldInline(ArtMethod* caller, ArtMethod* callee) {
// 检查函数大小限制
if (callee->GetCodeSize() > kMaxInlineSize) {
return false;
}
// 检查递归调用
if (IsRecursiveCall(caller, callee)) {
return false;
}
// 检查是否为热点函数
if (!IsHotMethod(callee)) {
return false;
}
// 其他条件判断...
return true;
}
void Run() {
for (HBasicBlock* block : graph->GetBlocks()) {
for (HInstruction* inst : block->GetInstructions()) {
if (inst->IsInvoke()) {
HInvoke* invoke = inst->AsInvoke();
ArtMethod* callee = invoke->GetTargetMethod();
if (ShouldInline(invoke->GetMethod(), callee)) {
InlineFunction(invoke, callee); // 执行内联
}
}
}
}
}
};
决策过程综合考虑函数大小、递归调用、热点程度等因素,避免因过度内联导致代码膨胀或性能下降。
5.2 函数内联后的跨函数优化
函数内联后,原本分离的函数代码合并为一体,为全局优化提供了更多机会。例如,内联后可以进行跨函数的常量传播、公共子表达式消除等操作。在art/compiler/optimizing/global_optimization.cc
中,GlobalOptimization
类利用内联结果进行进一步优化:
cpp
// 全局优化类
class GlobalOptimization {
public:
GlobalOptimization(HGraph* graph) : graph_(graph) {}
void Run() {
InlinePass inline_pass(graph_);
inline_pass.Run(); // 执行函数内联
ConstantPropagation cp(graph_);
cp.Run(); // 执行全局常量传播
CommonSubexpressionElimination cse(graph_);
cse.Run(); // 执行公共子表达式消除
}
};
通过函数内联和后续的全局优化,ART可以消除函数调用开销,减少冗余计算,提升程序整体执行效率。
六、公共子表达式消除与代码冗余减少
6.1 公共子表达式识别
公共子表达式消除(CSE)是通过识别程序中重复的计算表达式,并仅保留一次计算来减少冗余。在art/compiler/optimizing/common_subexpression_elimination.cc
中,CommonSubexpressionElimination
类利用数据流分析和哈希表来识别公共子表达式:
cpp
// 公共子表达式消除类
class CommonSubexpressionElimination {
public:
CommonSubexpressionElimination(HGraph* graph) : graph_(graph) {}
void Run() {
std::unordered_map<ExpressionHash, HInstruction*> expression_table;
for (HBasicBlock* block : graph->GetBlocks()) {
for (HInstruction* inst : block->GetInstructions()) {
if (inst->IsCompute()) {
ExpressionHash hash = ComputeInstructionHash(inst); // 计算指令哈希值
auto it = expression_table.find(hash);
if (it != expression_table.end()) {
HInstruction* existing_inst = it->second;
ReplaceInstructionWithExisting(inst, existing_inst); // 替换为已有指令
} else {
expression_table[hash] = inst; // 插入新表达式
}
}
}
}
}
};
通过为每个计算指令生成哈希值,并与已记录的表达式哈希表进行比对,若发现相同哈希值,则说明存在公共子表达式。
6.2 跨函数公共子表达式优化
跨函数的公共子表达式优化需要结合函数内联的结果。当函数内联后,原本在不同函数中的公共子表达式可能出现在同一控制流图中,此时即可进行消除。在art/compiler/optimizing/global_cse.cc
中,GlobalCommonSubexpressionElimination
类负责处理跨函数的CSE:
cpp
// 全局公共子表达式消除类
class GlobalCommonSubexpressionElimination {
public:
GlobalCommonSubexpressionElimination(HGraph* graph) : graph_(graph) {}
void Run() {
InlinePass inline_pass(graph_);
inline_pass.Run(); // 先执行函数内联
CommonSubexpressionElimination cse(graph_);
cse.Run(); // 执行公共子表达式消除
// 处理跨函数边界的公共子表达式
for (HBasicBlock* block : graph->GetBlocks()) {
for (HInstruction* inst : block->GetInstructions()) {
if (inst->IsCrossFunctionCompute()) {
// 跨函数的计算指令特殊处理
ProcessCrossFunctionInstruction(inst);
}
}
}
}
};
通过跨函数的CSE,可以进一步减少程序中的冗余计算,提高代码执行效率,同时降低内存和CPU资源的消耗。
七、内存访问优化与跨函数分析
7.1 内存别名分析
内存别名分析(Memory Aliasing Analysis)用于确定多个内存访问操作是否指向同一内存位置,这对于优化内存访问指令、避免数据竞争至关重要。在art/compiler/optimizing/memory_alias_analysis.cc
中,MemoryAliasAnalysis
类通过数据流分析和指针分析实现别名检测:
cpp
// 内存别名分析类
class MemoryAliasAnalysis {
public:
MemoryAliasAnalysis(HGraph* graph) : graph_(graph)
cpp
// 内存别名分析类
class MemoryAliasAnalysis {
public:
MemoryAliasAnalysis(HGraph* graph) : graph_(graph) {}
void AnalyzeAliasing() {
// 遍历所有基本块和指令
for (HBasicBlock* block : graph->GetBlocks()) {
for (HInstruction* inst : block->GetInstructions()) {
if (inst->IsMemoryAccess()) {
HMemoryAccess* mem_access = inst->AsMemoryAccess();
// 分析内存访问指令的操作数
HValue* operand = mem_access->GetOperand();
if (operand->IsPointer()) {
// 若操作数为指针,进行指针指向分析
AnalyzePointerAliasing(mem_access, operand->AsPointer());
}
}
}
}
}
private:
void AnalyzePointerAliasing(HMemoryAccess* access, HPointer* pointer) {
// 收集所有可能指向同一内存位置的指针
std::vector<HPointer*> aliased_pointers = GetAliasedPointers(pointer);
for (HPointer* aliased_ptr : aliased_pointers) {
// 检查相关的内存访问指令是否存在冲突
for (HInstruction* other_inst : graph->GetInstructions()) {
if (other_inst->IsMemoryAccess() && other_inst != access) {
HMemoryAccess* other_access = other_inst->AsMemoryAccess();
HValue* other_operand = other_access->GetOperand();
if (other_operand->IsPointer() && other_operand->AsPointer() == aliased_ptr) {
// 发现别名冲突,记录并处理
HandleAliasConflict(access, other_access);
}
}
}
}
}
std::vector<HPointer*> GetAliasedPointers(HPointer* pointer) {
std::vector<HPointer*> result;
// 通过数据流分析,查找所有与当前指针可能指向同一位置的指针
// 例如,分析指针的赋值、运算等操作
for (HInstruction* inst : graph->GetInstructions()) {
if (inst->IsPointerAssignment()) {
HPointerAssignment* ptr_assign = inst->AsPointerAssignment();
HPointer* target = ptr_assign->GetTarget();
HValue* source = ptr_assign->GetSource();
if (source->IsPointer() && source->AsPointer() == pointer) {
result.push_back(target);
}
}
}
return result;
}
void HandleAliasConflict(HMemoryAccess* access1, HMemoryAccess* access2) {
// 根据冲突类型,采取不同的优化策略
// 例如,重新排序内存访问指令,或者插入内存屏障
if (access1->IsLoad() && access2->IsStore()) {
// 加载和存储冲突,调整指令顺序
ReorderMemoryAccess(access1, access2);
}
}
HGraph* graph;
};
通过内存别名分析,ART可以准确识别内存访问冲突,避免因数据不一致导致的错误,同时为后续的内存访问优化提供依据。
7.2 内存访问优化策略
基于内存别名分析的结果,ART在art/compiler/optimizing/memory_access_optimization.cc
中实现多种内存访问优化策略:
- 内存合并(Memory Coalescing):将相邻的小内存访问合并为一次大内存访问,减少内存访问次数。例如,将多次单字节读取合并为一次多字节读取。
cpp
// 内存合并类
class MemoryCoalescing {
public:
MemoryCoalescing(HGraph* graph) : graph_(graph) {}
void Optimize() {
std::vector<HMemoryAccess*> memory_accesses;
// 收集所有内存访问指令
for (HBasicBlock* block : graph->GetBlocks()) {
for (HInstruction* inst : block->GetInstructions()) {
if (inst->IsMemoryAccess()) {
memory_accesses.push_back(inst->AsMemoryAccess());
}
}
}
// 按内存地址排序
std::sort(memory_accesses.begin(), memory_accesses.end(),
[](HMemoryAccess* a, HMemoryAccess* b) {
return a->GetAddress() < b->GetAddress();
});
for (size_t i = 0; i < memory_accesses.size(); ++i) {
HMemoryAccess* current = memory_accesses[i];
for (size_t j = i + 1; j < memory_accesses.size(); ++j) {
HMemoryAccess* next = memory_accesses[j];
// 检查是否可以合并
if (CanCoalesce(current, next)) {
CoalesceMemoryAccess(current, next);
// 合并后移除next指令
memory_accesses.erase(memory_accesses.begin() + j);
--j;
}
}
}
}
private:
bool CanCoalesce(HMemoryAccess* a, HMemoryAccess* b) {
// 检查地址是否相邻,访问类型是否相同
uintptr_t a_address = a->GetAddress();
uintptr_t b_address = b->GetAddress();
size_t a_size = a->GetSize();
return b_address == a_address + a_size && a->GetAccessType() == b->GetAccessType();
}
void CoalesceMemoryAccess(HMemoryAccess* a, HMemoryAccess* b) {
// 合并内存访问指令
a->SetSize(a->GetSize() + b->GetSize());
// 移除b指令
a->GetBlock()->RemoveInstruction(b);
}
HGraph* graph;
};
- 内存预取(Memory Prefetching):在数据实际使用前,提前将数据加载到缓存中,减少内存访问延迟。ART通过分析数据访问模式,在合适的位置插入预取指令。
cpp
// 内存预取类
class MemoryPrefetching {
public:
MemoryPrefetching(HGraph* graph) : graph_(graph) {}
void Optimize() {
// 分析数据访问模式,识别热点数据
std::unordered_map<HValue*, size_t> access_counts;
for (HBasicBlock* block : graph->GetBlocks()) {
for (HInstruction* inst : block->GetInstructions()) {
if (inst->IsMemoryAccess()) {
HMemoryAccess* mem_access = inst->AsMemoryAccess();
HValue* operand = mem_access->GetOperand();
access_counts[operand] = access_counts[operand] + 1;
}
}
}
for (auto& pair : access_counts) {
HValue* operand = pair.first;
size_t count = pair.second;
if (count > kHotAccessThreshold) {
// 对于热点数据,插入预取指令
InsertPrefetchInstruction(operand);
}
}
}
private:
void InsertPrefetchInstruction(HValue* operand) {
// 在合适的基本块前插入预取指令
HBasicBlock* insert_block = GetSuitableInsertBlock(operand);
if (insert_block != nullptr) {
HPrefetchInstruction* prefetch = new (graph->GetArena()) HPrefetchInstruction(operand);
insert_block->InsertInstructionBefore(insert_block->GetFirstInstruction(), prefetch);
}
}
HBasicBlock* GetSuitableInsertBlock(HValue* operand) {
// 寻找距离数据使用点合适的基本块
// 例如,选择在数据首次使用前的基本块
for (HBasicBlock* block : graph->GetBlocks()) {
for (HInstruction* inst : block->GetInstructions()) {
if (inst->UsesValue(operand)) {
return block;
}
}
}
return nullptr;
}
HGraph* graph;
static const size_t kHotAccessThreshold = 5;
};
八、跨函数的控制流优化
8.1 函数调用图(Call Graph)构建
函数调用图(Call Graph)是跨函数控制流分析的基础,它展示了程序中函数之间的调用关系。在art/compiler/optimizing/call_graph_construction.cc
中,CallGraphConstruction
类负责构建函数调用图:
cpp
// 函数调用图构建类
class CallGraphConstruction {
public:
CallGraphConstruction(HGraph* graph) : graph_(graph) {}
CallGraph* BuildCallGraph() {
CallGraph* call_graph = new CallGraph();
// 遍历所有方法
for (ArtMethod* method : graph->GetMethods()) {
CallGraphNode* node = new CallGraphNode(method);
call_graph->AddNode(node);
}
// 分析方法内的调用指令,建立调用关系
for (HBasicBlock* block : graph->GetBlocks()) {
for (HInstruction* inst : block->GetInstructions()) {
if (inst->IsInvoke()) {
HInvoke* invoke = inst->AsInvoke();
ArtMethod* caller = invoke->GetMethod();
ArtMethod* callee = invoke->GetTargetMethod();
CallGraphNode* caller_node = call_graph->GetNode(caller);
CallGraphNode* callee_node = call_graph->GetNode(callee);
if (caller_node != nullptr && callee_node != nullptr) {
call_graph->AddEdge(caller_node, callee_node);
}
}
}
}
return call_graph;
}
};
通过构建函数调用图,ART可以从全局视角分析函数间的控制流传递,为后续的跨函数优化提供依据。
8.2 跨函数的条件分支优化
基于函数调用图,ART在art/compiler/optimizing/cross_function_branch_optimization.cc
中对跨函数的条件分支进行优化:
- 分支预测优化:根据函数调用的历史数据,预测条件分支的走向,从而生成更高效的机器码。例如,若某个函数调用后条件为真的概率较高,则优先执行条件为真的代码路径。
cpp
// 跨函数分支预测优化类
class CrossFunctionBranchPredictionOptimization {
public:
CrossFunctionBranchPredictionOptimization(HGraph* graph) : graph_(graph) {}
void Optimize() {
CallGraphConstruction cgc(graph);
CallGraph* call_graph = cgc.BuildCallGraph();
for (CallGraphEdge* edge : call_graph->GetEdges()) {
ArtMethod* caller = edge->GetCaller()->GetMethod();
ArtMethod* callee = edge->GetCallee()->GetMethod();
// 分析调用前后的条件分支
for (HBasicBlock* block : caller->GetGraph()->GetBlocks()) {
for (HInstruction* inst : block->GetInstructions()) {
if (inst->IsInvoke() && inst->AsInvoke()->GetTargetMethod() == callee) {
HInstruction* prev_inst = inst->GetPreviousInstruction();
if (prev_inst->IsBranch()) {
HBranch* branch = prev_inst->AsBranch();
// 根据历史调用数据,调整分支预测
if (IsMostlyTrue(branch)) {
SetBranchPrediction(branch, true);
} else {
SetBranchPrediction(branch, false);
}
}
}
}
}
}
}
private:
bool IsMostlyTrue(HBranch* branch) {
// 假设通过统计历史调用数据判断分支走向
// 这里简化为随机返回示例
return rand() % 2 == 0;
}
void SetBranchPrediction(HBranch* branch, bool is_true) {
// 设置分支预测信息,供代码生成阶段使用
branch->SetPrediction(is_true);
}
HGraph* graph;
};
- 条件合并与简化:将多个函数中相似的条件判断进行合并和简化,减少重复的条件计算。例如,若多个函数都对同一个变量进行范围检查,则将该检查提取到一个公共函数中。
cpp
// 跨函数条件合并优化类
class CrossFunctionConditionCoalescing {
public:
CrossFunctionConditionCoalescing(HGraph* graph) : graph_(graph) {}
void Optimize() {
CallGraphConstruction cgc(graph);
CallGraph* call_graph = cgc.BuildCallGraph();
std::unordered_map<ConditionExpression, std::vector<HInstruction*>> condition_map;
// 收集所有条件表达式
for (CallGraphNode* node : call_graph->GetNodes()) {
ArtMethod* method = node->GetMethod();
for (HBasicBlock* block : method->GetGraph()->GetBlocks()) {
for (HInstruction* inst : block->GetInstructions()) {
if (inst->IsBranch()) {
HBranch* branch = inst->AsBranch();
ConditionExpression cond = ExtractConditionExpression(branch);
condition_map[cond].push_back(branch);
}
}
}
}
for (auto& pair : condition_map) {
ConditionExpression cond = pair.first;
std::vector<HInstruction*>& branches = pair.second;
if (branches.size() > 1) {
// 合并条件表达式
HInstruction* new_cond = CreateMergedCondition(cond);
for (HInstruction* branch : branches) {
ReplaceCondition(branch, new_cond);
}
}
}
}
private:
ConditionExpression ExtractConditionExpression(HBranch* branch) {
// 提取条件分支的表达式
// 这里简化为返回操作数示例
return branch->GetConditionOperand();
}
HInstruction* CreateMergedCondition(ConditionExpression cond) {
// 创建合并后的条件表达式指令
// 假设简单返回原条件示例
return new (graph->GetArena()) HConditionInstruction(cond);
}
void ReplaceCondition(HInstruction* branch, HInstruction* new_cond) {
// 替换条件分支的条件表达式
HBranch* br = branch->AsBranch();
br->SetConditionOperand(new_cond);
}
HGraph* graph;
};
九、跨函数的数据流优化
9.1 跨函数的数据流分析
跨函数的数据流分析需要考虑函数调用时参数传递和返回值对数据的影响。在art/compiler/optimizing/cross_function_data_flow_analysis.cc
中,CrossFunctionDataFlowAnalysis
类扩展了数据流分析框架以支持跨函数场景:
cpp
// 跨函数数据流分析类
class CrossFunctionDataFlowAnalysis {
public:
CrossFunctionDataFlowAnalysis(HGraph* graph) : graph_(graph) {}
void Analyze() {
CallGraphConstruction cgc(graph);
CallGraph* call_graph = cgc.BuildCallGraph();
// 初始化每个函数的数据流状态
for (CallGraphNode* node : call_graph->GetNodes()) {
ArtMethod* method = node->GetMethod();
InitializeDataFlowState(method);
}
// 迭代分析数据流
bool changed;
do {
changed = false;
for (CallGraphNode* node : call_graph->GetNodes()) {
ArtMethod* method = node->GetMethod();
for (CallGraphEdge* edge : node->GetOutgoingEdges()) {
ArtMethod* callee = edge->GetCallee()->GetMethod();
// 传递调用者的数据流状态到被调用者
TransferDataFlowToCallee(method, callee);
}
for (CallGraphEdge* edge : node->GetIncomingEdges()) {
ArtMethod* caller = edge->GetCaller()->GetMethod();
// 合并被调用者的数据流状态到调用者
MergeCalleeDataFlowIntoCaller(caller, method);
}
if (UpdateDataFlowState(method)) {
changed = true;
}
}
} while (changed);
}
private:
void InitializeDataFlowState(ArtMethod* method) {
// 初始化方法内的变量定义和使用状态
HGraph* method_graph = method->GetGraph();
for (HBasicBlock* block : method_graph->GetBlocks()) {
block->SetInSet(DataFlowSet());
block->SetOutSet(DataFlowSet());
}
}
void TransferDataFlowToCallee(ArtMethod* caller, ArtMethod* callee) {
// 传递调用者的参数和全局变量状态到被调用者
HGraph* caller_graph = caller->GetGraph();
HGraph* callee_graph = callee->GetGraph();
for (HInstruction* inst : caller_graph->GetInstructions()) {
if (inst->IsInvoke() && inst->AsInvoke()->GetTargetMethod() == callee) {
HInvoke* invoke = inst->AsInvoke();
for (size_t i = 0; i < invoke->GetArgumentCount(); ++i) {
HValue* arg = invoke->GetArgument(i);
// 传递参数的数据流信息
TransferArgumentDataFlow(arg, callee_graph, i);
}
}
}
}
void MergeCalleeDataFlowIntoCaller(ArtMethod* caller
cpp
void MergeCalleeDataFlowIntoCaller(ArtMethod* caller, ArtMethod* callee) {
HGraph* caller_graph = caller->GetGraph();
HGraph* callee_graph = callee->GetGraph();
for (HBasicBlock* block : caller_graph->GetBlocks()) {
for (HInstruction* inst : block->GetInstructions()) {
if (inst->IsInvoke() && inst->AsInvoke()->GetTargetMethod() == callee) {
HInvoke* invoke = inst->AsInvoke();
// 获取被调用函数的返回值数据流信息
HValue* return_value = GetCalleeReturnValue(callee_graph);
if (return_value != nullptr) {
// 合并返回值数据流到调用者
MergeReturnValueDataFlow(invoke, return_value);
}
// 合并被调用函数对全局变量的影响
MergeGlobalVariableChanges(caller_graph, callee_graph);
}
}
}
}
bool UpdateDataFlowState(ArtMethod* method) {
HGraph* method_graph = method->GetGraph();
bool changed = false;
for (HBasicBlock* block : method_graph->GetBlocks()) {
DataFlowSet old_in = block->GetInSet();
DataFlowSet old_out = block->GetOutSet();
// 执行数据流传递函数
TransferFunction(block);
if (old_in != block->GetInSet() || old_out != block->GetOutSet()) {
changed = true;
}
}
return changed;
}
void TransferFunction(HBasicBlock* block) {
DataFlowSet new_in = UnionAllPredsOut(block);
DataFlowSet new_out = new_in;
for (HInstruction* inst : block->GetInstructions()) {
if (inst->IsDefinition()) {
new_out.RemoveAllDefinitionsOf(inst->GetDef());
new_out.AddDefinition(inst);
}
// 处理函数调用对数据流的影响
if (inst->IsInvoke()) {
HInvoke* invoke = inst->AsInvoke();
ArtMethod* callee = invoke->GetTargetMethod();
// 考虑被调用函数对数据流的潜在修改
UpdateDataFlowForCall(invoke, callee);
}
}
block->SetInSet(new_in);
block->SetOutSet(new_out);
}
HGraph* graph;
};
通过跨函数数据流分析,能够准确追踪数据在函数调用过程中的变化,为后续的全局优化提供更全面的信息。
9.2 基于跨函数数据流的优化策略
基于跨函数数据流分析结果,ART在art/compiler/optimizing/cross_function_data_flow_optimization.cc
中实施多种优化:
- 全局变量读写优化:分析全局变量在不同函数中的读写情况,减少不必要的内存访问。若多个函数对同一全局变量的读取操作在中间没有其他修改操作,则可以合并这些读取。
cpp
// 跨函数全局变量读写优化类
class CrossFunctionGlobalVariableOptimization {
public:
CrossFunctionGlobalVariableOptimization(HGraph* graph) : graph_(graph) {}
void Optimize() {
CrossFunctionDataFlowAnalysis analysis(graph);
analysis.Analyze();
std::unordered_map<HGlobalVariable*, std::vector<HMemoryAccess*>> global_accesses;
// 收集所有对全局变量的内存访问操作
for (HBasicBlock* block : graph->GetBlocks()) {
for (HInstruction* inst : block->GetInstructions()) {
if (inst->IsMemoryAccess()) {
HMemoryAccess* mem_access = inst->AsMemoryAccess();
HValue* operand = mem_access->GetOperand();
if (operand->IsGlobalVariable()) {
HGlobalVariable* global_var = operand->AsGlobalVariable();
global_accesses[global_var].push_back(mem_access);
}
}
}
}
for (auto& pair : global_accesses) {
HGlobalVariable* global_var = pair.first;
std::vector<HMemoryAccess*>& access_list = pair.second;
// 合并连续的读取操作
MergeConsecutiveLoads(access_list);
// 消除冗余的写入操作
EliminateRedundantStores(access_list);
}
}
private:
void MergeConsecutiveLoads(std::vector<HMemoryAccess*>& accesses) {
for (size_t i = 0; i < accesses.size() - 1; ++i) {
HMemoryAccess* current = accesses[i];
HMemoryAccess* next = accesses[i + 1];
if (current->IsLoad() && next->IsLoad() &&
current->GetOperand() == next->GetOperand()) {
// 合并两个读取操作
current->SetSize(current->GetSize() + next->GetSize());
current->GetBlock()->RemoveInstruction(next);
accesses.erase(accesses.begin() + i + 1);
--i;
}
}
}
void EliminateRedundantStores(std::vector<HMemoryAccess*>& accesses) {
std::unordered_set<HMemoryAccess*> redundant_stores;
for (size_t i = 0; i < accesses.size(); ++i) {
HMemoryAccess* current = accesses[i];
if (current->IsStore()) {
for (size_t j = i + 1; j < accesses.size(); ++j) {
HMemoryAccess* next = accesses[j];
if (next->IsStore() &&
current->GetOperand() == next->GetOperand()) {
// 标记冗余的写入操作
redundant_stores.insert(next);
}
}
}
}
for (HMemoryAccess* store : redundant_stores) {
store->GetBlock()->RemoveInstruction(store);
}
}
HGraph* graph;
};
- 参数传递优化:分析函数参数的传递方式,对于大对象参数,若在被调用函数中没有修改,可以采用引用传递替代值传递,减少内存拷贝开销。
cpp
// 跨函数参数传递优化类
class CrossFunctionParameterPassingOptimization {
public:
CrossFunctionParameterPassingOptimization(HGraph* graph) : graph_(graph) {}
void Optimize() {
CallGraphConstruction cgc(graph);
CallGraph* call_graph = cgc.BuildCallGraph();
for (CallGraphEdge* edge : call_graph->GetEdges()) {
ArtMethod* caller = edge->GetCaller()->GetMethod();
ArtMethod* callee = edge->GetCallee()->GetMethod();
HGraph* caller_graph = caller->GetGraph();
for (HBasicBlock* block : caller_graph->GetBlocks()) {
for (HInstruction* inst : block->GetInstructions()) {
if (inst->IsInvoke() && inst->AsInvoke()->GetTargetMethod() == callee) {
HInvoke* invoke = inst->AsInvoke();
for (size_t i = 0; i < invoke->GetArgumentCount(); ++i) {
HValue* arg = invoke->GetArgument(i);
if (IsLargeObject(arg) &&
!IsObjectModifiedInCallee(callee, i)) {
// 将值传递改为引用传递
ChangeParameterPassingToReference(invoke, i);
}
}
}
}
}
}
}
private:
bool IsLargeObject(HValue* value) {
// 假设通过对象大小判断是否为大对象
if (value->IsObject()) {
HObject* obj = value->AsObject();
return obj->GetSize() > kLargeObjectThreshold;
}
return false;
}
bool IsObjectModifiedInCallee(ArtMethod* callee, size_t arg_index) {
HGraph* callee_graph = callee->GetGraph();
// 分析被调用函数中是否修改了该参数对象
for (HBasicBlock* block : callee_graph->GetBlocks()) {
for (HInstruction* inst : block->GetInstructions()) {
if (inst->IsStore() && inst->UsesValue(GetParameterValue(callee_graph, arg_index))) {
return true;
}
}
}
return false;
}
void ChangeParameterPassingToReference(HInvoke* invoke, size_t arg_index) {
HValue* arg = invoke->GetArgument(arg_index);
// 修改参数传递方式为引用
arg->SetIsReference(true);
}
HGraph* graph;
static const size_t kLargeObjectThreshold = 128;
};
十、优化过程中的权衡与策略选择
10.1 优化成本与收益分析
在实施全局优化和跨函数分析时,ART需要在优化成本和性能收益之间进行权衡。优化过程本身会消耗编译时间和计算资源,因此需要评估每种优化策略的实际效果。在art/compiler/optimizing/optimization_strategy.cc
中,OptimizationStrategy
类负责分析优化成本与收益:
cpp
// 优化策略类
class OptimizationStrategy {
public:
OptimizationStrategy(HGraph* graph) : graph_(graph) {}
void SelectOptimalStrategies() {
std::vector<OptimizationPass*> available_passes = GetAvailableOptimizationPasses();
std::vector<OptimizationPass*> selected_passes;
for (OptimizationPass* pass : available_passes) {
// 估算优化成本,例如编译时间增加量
size_t cost = EstimateOptimizationCost(pass);
// 估算性能收益,例如执行时间减少量
size_t benefit = EstimatePerformanceBenefit(pass);
if (benefit > cost * kBenefitCostRatioThreshold) {
selected_passes.push_back(pass);
}
}
// 执行选择的优化策略
ExecuteSelectedPasses(selected_passes);
}
private:
std::vector<OptimizationPass*> GetAvailableOptimizationPasses() {
// 返回所有可用的优化策略
return {
new ConstantPropagation(graph),
new CommonSubexpressionElimination(graph),
new LoopOptimization(graph),
// 其他优化策略...
};
}
size_t EstimateOptimizationCost(OptimizationPass* pass) {
// 简化估算,假设根据优化类型设定固定成本
switch (pass->GetType()) {
case OptimizationPass::kConstantPropagation:
return kConstantPropagationCost;
case OptimizationPass::kCommonSubexpressionElimination:
return kCseCost;
case OptimizationPass::kLoopOptimization:
return kLoopOptimizationCost;
default:
return 0;
}
}
size_t EstimatePerformanceBenefit(OptimizationPass* pass) {
// 通过模拟执行或历史数据估算性能收益
// 这里简化为随机返回示例
return rand() % 100;
}
void ExecuteSelectedPasses(const std::vector<OptimizationPass*>& passes) {
for (OptimizationPass* pass : passes) {
pass->Run();
delete pass;
}
}
HGraph* graph;
static const size_t kBenefitCostRatioThreshold = 2;
static const size_t kConstantPropagationCost = 10;
static const size_t kCseCost = 15;
static const size_t kLoopOptimizationCost = 20;
};
通过比较优化的成本与收益,ART可以选择最适合当前程序和运行环境的优化策略,避免过度优化带来的负面影响。
10.2 基于运行时信息的动态优化
除了静态优化,ART还支持基于运行时信息的动态优化。在程序运行过程中,通过收集方法调用频率、数据访问模式等信息,在art/runtime/dynamic_optimization.cc
中实现动态优化调整:
cpp
// 动态优化类
class DynamicOptimization {
public:
DynamicOptimization(Runtime* runtime) : runtime_(runtime) {}
void MonitorAndOptimize() {
// 持续监控运行时信息
while (true) {
std::unordered_map<ArtMethod*, size_t> method_invocations =
CollectMethodInvocationCounts();
std::unordered_map<HValue*, size_t> data_accesses =
CollectDataAccessCounts();
for (auto& pair : method_invocations) {
ArtMethod* method = pair.first;
size_t invocation_count = pair.second;
if (invocation_count > kDynamicOptimizationThreshold) {
// 对于高频调用方法,重新进行优化
ReoptimizeMethod(method);
}
}
for (auto& pair : data_accesses) {
HValue* value = pair.first;
size_t access_count = pair.second;
if (access_count > kDataAccessOptimizationThreshold) {
// 对于高频访问数据,调整内存访问策略
OptimizeDataAccess(value);
}
}
// 休眠一段时间后继续监控
std::this_thread::sleep_for(std::chrono::seconds(kMonitoringInterval));
}
}
private:
std::unordered_map<ArtMethod*, size_t> CollectMethodInvocationCounts() {
// 从运行时统计信息中收集方法调用次数
std::unordered_map<ArtMethod*, size_t> counts;
// 假设通过runtime_获取统计信息
for (ArtMethod* method : runtime_->GetAllMethods()) {
counts[method] = method->GetInvocationCount();
}
return counts;
}
std::unordered_map<HValue*, size_t> CollectDataAccessCounts() {
// 收集数据访问次数
std::unordered_map<HValue*, size_t> counts;
// 假设通过runtime_获取数据访问信息
for (HValue* value : runtime_->GetAllDataValues()) {
counts[value] = value->GetAccessCount();
}
return counts;
}
void ReoptimizeMethod(ArtMethod* method) {
HGraph* graph = method->GetGraph();
// 重新应用优化策略
OptimizationStrategy strategy(graph);
strategy.SelectOptimalStrategies();
}
void OptimizeDataAccess(HValue* value) {
// 根据数据访问模式调整内存访问策略
if (value->IsMemoryAccess()) {
HMemoryAccess* mem_access = value->AsMemoryAccess();
if (IsFrequentLoad(mem_access)) {
// 例如,添加内存预取指令
InsertPrefetchInstruction(mem_access);
}
}
}
bool IsFrequentLoad(HMemoryAccess* mem_access) {
// 判断是否为高频读取操作
return mem_access->GetAccessCount() > kFrequentLoadThreshold;
}
void InsertPrefetchInstruction(HMemoryAccess* mem_access) {
// 在合适位置插入预取指令
HBasicBlock* block = mem_access->GetBlock();
HPrefetchInstruction* prefetch =
new (graph->GetArena()) HPrefetchInstruction(mem_access->GetOperand());
block->InsertInstructionBefore(mem_access, prefetch);
}
Runtime* runtime_;
static const size_t kDynamicOptimizationThreshold = 1000;
static const size_t kDataAccessOptimizationThreshold = 500;
static const size_t kFrequentLoadThreshold = 100;
static const int kMonitoringInterval = 60;
};
通过动态优化,ART可以根据实际运行情况进一步提升程序性能,适应不同的使用场景和负载变化。
十一、全局优化与跨函数分析的调试与验证
11.1 优化过程日志记录
为了便于分析优化过程,ART在art/compiler/optimizing/optimization_logger.cc
中实现了优化日志记录功能:
cpp
// 优化日志记录类
class OptimizationLogger {
public:
OptimizationLogger() {
// 打开日志文件
log_file_ = fopen("optimization.log", "w");
if (log_file_ == nullptr) {
LOG(ERROR) << "Failed to open optimization log file";
}
}
~OptimizationLogger() {
if (log_file_ != nullptr) {
fclose(log_file_);
}
}
void LogOptimizationPassStart(const char* pass_name) {
if (log_file_ != nullptr) {
fprintf(log_file_, "Start optimization pass: %s\n", pass_name);
}
}
void LogOptimizationPassEnd(const char* pass_name) {
if (log_file_ != nullptr) {
fprintf(log_file_, "End optimization pass: %s\n", pass_name);
}
}
void LogInstructionChange(HInstruction* old_inst, HInstruction* new_inst) {
if (log_file_ != nullptr) {
fprintf(log_file_, "Instruction changed:\n");
fprintf(log_file_, "Old instruction: %s\n", old_inst->ToString().c_str());
fprintf(log_file_, "New instruction: %s\n", new_inst->ToString().c_str());
}
}
private:
FILE*
cpp
private:
FILE* log_file_;
};
// 在优化器中使用日志记录器
class OptimizingCompiler {
public:
OptimizingCompiler(HGraph* graph) : graph_(graph), logger_(new OptimizationLogger()) {}
void Run() {
ConstantPropagation cp(graph);
logger_->LogOptimizationPassStart("Constant Propagation");
cp.Run();
logger_->LogOptimizationPassEnd("Constant Propagation");
CommonSubexpressionElimination cse(graph);
logger_->LogOptimizationPassStart("Common Subexpression Elimination");
cse.Run();
for (auto& change : cse.GetInstructionChanges()) {
logger_->LogInstructionChange(change.first, change.second);
}
logger_->LogOptimizationPassEnd("Common Subexpression Elimination");
// 其他优化 passes...
}
private:
HGraph* graph;
std::unique_ptr<OptimizationLogger> logger_;
};
通过详细记录每个优化阶段的开始、结束,以及指令变化情况,开发者可以清晰追溯优化过程,定位潜在问题。
11.2 正确性验证机制
ART通过多种方式验证全局优化与跨函数分析的正确性,在art/compiler/optimizing/verifier.cc
中实现了专门的验证逻辑:
cpp
// 优化结果验证类
class OptimizationVerifier {
public:
OptimizationVerifier(HGraph* original_graph, HGraph* optimized_graph)
: original_graph(original_graph), optimized_graph(optimized_graph) {}
bool Verify() {
// 验证基本块数量和顺序
if (original_graph->GetBlocks().size() != optimized_graph->GetBlocks().size()) {
return false;
}
auto original_blocks = original_graph->GetBlocks();
auto optimized_blocks = optimized_graph->GetBlocks();
for (size_t i = 0; i < original_blocks.size(); ++i) {
if (original_blocks[i]->GetNumber() != optimized_blocks[i]->GetNumber()) {
return false;
}
}
// 验证指令语义等价性
for (HBasicBlock* original_block : original_graph->GetBlocks()) {
HBasicBlock* optimized_block = optimized_graph->GetBlockById(original_block->GetNumber());
auto original_instructions = original_block->GetInstructions();
auto optimized_instructions = optimized_block->GetInstructions();
if (original_instructions.size() != optimized_instructions.size()) {
return false;
}
for (size_t j = 0; j < original_instructions.size(); ++j) {
if (!InstructionsAreSemanticallyEqual(original_instructions[j], optimized_instructions[j])) {
return false;
}
}
}
return true;
}
private:
bool InstructionsAreSemanticallyEqual(HInstruction* original_inst, HInstruction* optimized_inst) {
// 对比指令操作码
if (original_inst->GetOpcode() != optimized_inst->GetOpcode()) {
return false;
}
// 对比操作数
auto original_operands = original_inst->GetOperands();
auto optimized_operands = optimized_inst->GetOperands();
if (original_operands.size() != optimized_operands.size()) {
return false;
}
for (size_t k = 0; k < original_operands.size(); ++k) {
if (!OperandsAreEqual(original_operands[k], optimized_operands[k])) {
return false;
}
}
return true;
}
bool OperandsAreEqual(HValue* original_operand, HValue* optimized_operand) {
// 处理常量操作数
if (original_operand->IsConstant() && optimized_operand->IsConstant()) {
return original_operand->AsConstant()->GetValue() == optimized_operand->AsConstant()->GetValue();
}
// 处理变量操作数,对比变量标识
if (original_operand->IsVariable() && optimized_operand->IsVariable()) {
return original_operand->GetVariableId() == optimized_operand->GetVariableId();
}
return false;
}
HGraph* original_graph;
HGraph* optimized_graph;
};
该验证机制确保优化后的代码在功能上与原始代码等价,避免因优化引入逻辑错误。
十二、全局优化与跨函数分析的性能评估
12.1 基准测试框架
ART通过基准测试评估全局优化与跨函数分析的实际性能提升,在art/tests/benchmarking/optimization_benchmark.cc
中构建了基准测试框架:
cpp
// 优化基准测试类
class OptimizationBenchmark : public ::testing::Test {
public:
OptimizationBenchmark() : original_runtime(nullptr), optimized_runtime(nullptr) {}
void SetUp() override {
// 初始化原始运行时环境
original_runtime = CreateRuntime(false);
// 初始化应用并加载未优化代码
LoadAppIntoRuntime(original_runtime, "unoptimized_app.dex");
// 初始化优化后的运行时环境
optimized_runtime = CreateRuntime(true);
// 加载经过全局优化与跨函数分析的代码
LoadAppIntoRuntime(optimized_runtime, "optimized_app.dex");
}
void TearDown() override {
delete original_runtime;
delete optimized_runtime;
}
void RunBenchmark() {
// 执行未优化代码并记录执行时间
uint64_t original_time = MeasureExecutionTime(original_runtime, "benchmark_method");
// 执行优化后代码并记录执行时间
uint64_t optimized_time = MeasureExecutionTime(optimized_runtime, "benchmark_method");
// 计算性能提升比例
double improvement = ((double)(original_time - optimized_time) / (double)original_time) * 100;
LOG(INFO) << "Optimization improved performance by: " << improvement << "%";
}
private:
Runtime* original_runtime;
Runtime* optimized_runtime;
Runtime* CreateRuntime(bool enable_optimizations) {
// 根据标志位创建是否启用优化的运行时实例
RuntimeBuilder builder;
builder.SetEnableGlobalOptimizations(enable_optimizations);
return builder.Build();
}
void LoadAppIntoRuntime(Runtime* runtime, const char* dex_file_path) {
// 从文件加载Dex字节码到运行时
DexFileLoader loader;
std::unique_ptr<DexFile> dex_file = loader.LoadDexFile(dex_file_path);
runtime->RegisterDexFile(std::move(dex_file));
}
uint64_t MeasureExecutionTime(Runtime* runtime, const char* method_name) {
// 使用系统时钟测量方法执行时间
auto start = std::chrono::high_resolution_clock::now();
InvokeMethod(runtime, method_name);
auto end = std::chrono::high_resolution_clock::now();
return std::chrono::duration_cast<std::chrono::nanoseconds>(end - start).count();
}
void InvokeMethod(Runtime* runtime, const char* method_name) {
// 通过反射机制调用指定方法
ClassLinker* linker = runtime->GetClassLinker();
std::string descriptor = "()V";
mirror::Class* clazz = linker->FindClass("Lcom/example/MyClass;", runtime->GetClassPath());
mirror::ArtMethod* method = clazz->FindDirectMethodByName(method_name, descriptor);
Thread* self = Thread::Current();
jobject obj = clazz->AllocObject(self);
JValue result;
method->Invoke(self, obj, &result);
}
};
// 测试用例
TEST_F(OptimizationBenchmark, GlobalOptimizationPerformance) {
RunBenchmark();
}
该框架通过对比优化前后代码的执行时间,量化评估优化效果。
12.2 性能分析工具集成
ART集成了多种性能分析工具,如Systrace
和Perfetto
,在art/runtime/profile/profile_generator.cc
中实现数据采集与集成:
cpp
// 性能数据采集类
class PerformanceProfileGenerator {
public:
PerformanceProfileGenerator(Runtime* runtime) : runtime_(runtime) {}
void GenerateProfile(const char* output_path) {
// 启用Systrace追踪
EnableSystraceTracing();
// 执行应用代码一段时间
ExecuteAppForTracing();
// 停止追踪并导出Systrace数据
std::string systrace_data = StopAndExportSystrace();
// 采集Perfetto性能数据
std::string perfetto_data = CollectPerfettoData();
// 将数据合并写入输出文件
std::ofstream output_file(output_path);
output_file << "Systrace Data:\n" << systrace_data << "\n\n";
output_file << "Perfetto Data:\n" << perfetto_data << "\n";
output_file.close();
}
private:
void EnableSystraceTracing() {
// 通过系统接口启用Systrace
systrace_control_.StartTracing({"gfx", "dalvik"});
}
void ExecuteAppForTracing() {
// 调用应用中的性能测试方法
InvokePerformanceTestMethod(runtime_);
}
std::string StopAndExportSystrace() {
// 停止Systrace并获取追踪数据
return systrace_control_.StopTracingAndGetData();
}
std::string CollectPerfettoData() {
// 初始化Perfetto客户端
PerfettoClient client;
client.Connect();
// 启动数据采集
client.StartTracing();
// 等待一段时间
std::this_thread::sleep_for(std::chrono::seconds(5));
// 停止采集并获取数据
return client.StopTracingAndGetData();
}
Runtime* runtime;
SystraceControl systrace_control_;
};
通过这些工具,可以深入分析优化前后程序在CPU占用、内存分配、线程调度等方面的差异,为进一步优化提供数据支持。
十三、全局优化与跨函数分析的未来发展趋势
13.1 机器学习驱动的优化
未来ART可能引入机器学习技术提升优化效果,在art/compiler/optimizing/ml_based_optimizer.cc
中可展望其实现方向:
cpp
// 基于机器学习的优化器类
class MlBasedOptimizer {
public:
MlBasedOptimizer(HGraph* graph) : graph_(graph) {}
void TrainModel() {
// 收集历史编译数据
std::vector<CompilationData> historical_data = CollectHistoricalData();
// 准备训练数据
std::vector<TrainingSample> samples;
for (const CompilationData& data : historical_data) {
TrainingSample sample;
sample.features = ExtractFeatures(data);
sample.label = data.performance_improvement;
samples.push_back(sample);
}
// 使用TensorFlow Lite训练模型
tflite::FlatBufferModel model = tflite::FlatBufferModel::BuildFromFile("model.tflite");
tflite::InterpreterBuilder(*model, resolver_)(&interpreter_);
interpreter_->AllocateTensors();
for (const TrainingSample& sample : samples) {
SetInputTensorData(sample.features);
interpreter_->Invoke();
UpdateModelWeights(GetOutputTensorData());
}
// 保存训练好的模型
SaveModel(interpreter_);
}
void OptimizeWithModel() {
// 提取当前代码特征
std::vector<float> features = ExtractFeaturesForGraph(graph_);
// 使用模型预测最佳优化策略
SetInputTensorData(features);
interpreter_->Invoke();
int predicted_strategy = GetOutputTensorData()[0];
// 应用预测的优化策略
ApplyOptimizationStrategy(predicted_strategy);
}
private:
std::vector<CompilationData> CollectHistoricalData() {
// 从日志和性能记录中获取历史编译数据
std::vector<CompilationData> data;
// 假设从文件系统读取数据
for (const auto& file : GetCompilationLogFiles()) {
data.push_back(ParseCompilationLog(file));
}
return data;
}
std::vector<float> ExtractFeatures(const CompilationData& data) {
// 提取方法复杂度、调用频率等特征
std::vector<float> features;
features.push_back(data.method_complexity);
features.push_back(data.call_frequency);
// 其他特征...
return features;
}
void SetInputTensorData(const std::vector<float>& data) {
// 设置模型输入张量数据
TfLiteTensor* input_tensor = interpreter_->input(0);
float* input_data = tflite::GetTensorData<float>(input_tensor);
for (size_t i = 0; i < data.size(); ++i) {
input_data[i] = data[i];
}
}
std::vector<float> GetOutputTensorData() {
// 获取模型输出张量数据
TfLiteTensor* output_tensor = interpreter_->output(0);
return std::vector<float>(tflite::GetTensorData<float>(output_tensor),
tflite::GetTensorData<float>(output_tensor) + output_tensor->bytes / sizeof(float));
}
void UpdateModelWeights(const std::vector<float>& output) {
// 根据输出更新模型权重
// 简化示例,实际使用优化算法更新
for (int i = 0; i < model_weights_.size(); ++i) {
model_weights_[i] += output[i];
}
}
void SaveModel(TfLiteInterpreter* interpreter) {
// 保存训练好的模型到文件
// 假设使用TensorFlow Lite的保存接口
interpreter->SaveModel("optimized_model.tflite");
}
void ApplyOptimizationStrategy(int strategy) {
// 根据预测策略应用优化
switch (strategy) {
case 0:
ApplyConstantPropagation();
break;
case 1:
ApplyLoopOptimization();
break;
// 其他策略...
default:
break;
}
}
HGraph* graph;
tflite::ops::builtin::BuiltinOpResolver resolver_;
std::unique_ptr<tflite::Interpreter> interpreter_;
std::vector<float> model_weights_;
};
通过机器学习模型预测最优优化策略,可显著提升优化的针对性和有效性。
13.2 异构计算环境下的优化适配
随着异构计算(如CPU、GPU、NPU协同)的普及,ART需要在art/compiler/backend/multi_arch_backend.cc
中增强适配能力:
cpp
// 多架构后端优化类
class HeterogeneousOptimizer {
public:
HeterogeneousOptimizer(HGraph* graph) : graph_(graph) {}
void OptimizeForHeterogeneousEnv() {
// 检测可用计算资源
std::vector<ComputeResource> available_resources = DetectComputeResources();
// 根据资源特性分配优化任务
for (const ComputeResource& resource : available_resources) {
if (resource.type == kCpu) {
ApplyCpuOptimizations();
} else if (resource.type == kGpu) {
ApplyGpuOptimizations();
} else if (resource.type == kNpu) {
ApplyNpuOptimizations();
}
}
}
private:
std::vector<ComputeResource> DetectComputeResources() {
// 通过系统接口检测可用计算资源
std::vector<ComputeResource> resources;
if (IsCpuAvailable()) {
resources.push_back({kCpu, GetCpuSpecs()});
}
if (IsGpuAvailable()) {
resources.push_back({kGpu, GetGpuSpecs()});
}
if (IsNpuAvailable()) {
resources.push_back({kNpu, GetNpuSpecs()});
}
return resources;
}
void ApplyCpuOptimizations() {
// 针对CPU的优化策略
// 如指令级并行优化、缓存友好型优化
new LoopOptimization(graph_)->OptimizeLoops();
new InstructionLevelParallelismOptimization(graph_)->Optimize();
}
void ApplyGpuOptimizations() {
// 针对GPU的优化策略
// 如数据并行化、显存访问优化
new GpuDataParallelizationOptimization(graph_)->Optimize();
new GpuMemoryAccessOptimization(graph_)->Optimize();
}
void ApplyNpuOptimizations() {
// 针对NPU的优化策略
// 如神经网络计算优化、张量处理优化
new NpuNeuralNetworkOptimization(graph_)->Optimize();
new NpuTensorProcessingOptimization(graph_)->Optimize();
}
HGraph* graph;
};
通过为不同计算资源定制优化策略,充分发挥异构计算环境的性能优势。