下面是Faster LIO建图过程的伪代码表示,展示了其核心算法流程和关键步骤:
python
# Faster LIO主函数
def faster_lio_mapping(lidar_data_stream, imu_data_stream):
# 初始化参数和数据结构
state = initialize_state() # 初始状态 [位置, 姿态, 速度, IMU偏置]
local_map = initialize_incremental_map() # 初始化增量式地图 (ikd-Tree/iVox)
prev_lidar_frame = None
# 主循环
while not lidar_data_stream.empty() and not imu_data_stream.empty():
# 步骤1: 数据同步与读取
current_lidar_frame = lidar_data_stream.read_next_frame()
imu_buffer = imu_data_stream.read_until(current_lidar_frame.timestamp)
# 步骤2: IMU预积分
imu_preintegration = preintegrate_imu(imu_buffer, state.imu_bias)
predicted_state = predict_state(state, imu_preintegration)
# 步骤3: 点云去畸变
undistorted_lidar_points = undistort_point_cloud(
current_lidar_frame.points,
imu_buffer,
state,
predicted_state
)
# 步骤4: 特征提取
features = extract_features(undistorted_lidar_points)
# 步骤5: 紧耦合位姿优化
if prev_lidar_frame is not None:
# 构建优化问题
optimization_problem = build_optimization_problem(
features,
prev_lidar_frame,
local_map,
predicted_state,
imu_preintegration
)
# 求解优化问题,更新状态
state = solve_optimization(optimization_problem)
else:
state = predicted_state # 第一帧直接使用IMU预测
# 步骤6: 更新局部地图
update_local_map(local_map, undistorted_lidar_points, state.pose)
# 步骤7: 输出当前位姿和地图(可选:用于上层建图)
output_current_pose(state.pose)
output_incremental_map(local_map)
# 更新上一帧数据
prev_lidar_frame = features
return global_map # 返回最终地图
核心子函数实现
python
# IMU预积分函数
def preintegrate_imu(imu_buffer, imu_bias):
delta_R = I # 旋转增量
delta_v = 0 # 速度增量
delta_p = 0 # 位置增量
for imu_data in imu_buffer:
# 去除偏置
corrected_gyro = imu_data.gyro - imu_bias.gyro_bias
corrected_acc = imu_data.acc - imu_bias.acc_bias
# 更新旋转、速度和位置增量
delta_R = delta_R * exp_so3(corrected_gyro * dt)
delta_v = delta_v + delta_R * corrected_acc * dt
delta_p = delta_p + delta_v * dt + 0.5 * delta_R * corrected_acc * dt^2
return IMUPreintegration(delta_R, delta_v, delta_p)
# 点云去畸变函数
def undistort_point_cloud(points, imu_buffer, prev_state, predicted_state):
undistorted_points = []
for point in points:
# 计算点的相对时间
relative_time = point.timestamp - predicted_state.timestamp
# 插值IMU状态到点的时间
interp_pose = interpolate_pose(prev_state, predicted_state, relative_time)
# 将点变换到统一时间基准
undistorted_point = transform_point(point, interp_pose.inverse())
undistorted_points.append(undistorted_point)
return undistorted_points
# 特征提取函数
def extract_features(points):
edges = [] # 边缘特征
planes = [] # 平面特征
for point in points:
# 计算点的局部曲率
curvature = compute_curvature(point, points)
if curvature > EDGE_THRESHOLD:
edges.append(point)
elif curvature < PLANE_THRESHOLD:
planes.append(point)
return Features(edges, planes)
# 构建优化问题函数
def build_optimization_problem(features, prev_features, local_map, predicted_state, imu_preintegration):
problem = OptimizationProblem()
# 添加IMU预积分约束
problem.add_imu_constraint(
predicted_state.pose,
predicted_state.velocity,
prev_state.pose,
prev_state.velocity,
imu_preintegration
)
# 添加点云匹配约束
for edge_point in features.edges:
# 在局部地图中查找最近边缘点
nearest_edges = find_nearest_edges(local_map, edge_point)
for nearest_edge in nearest_edges:
problem.add_edge_constraint(edge_point, nearest_edge)
for plane_point in features.planes:
# 在局部地图中查找最近平面
nearest_planes = find_nearest_planes(local_map, plane_point)
for nearest_plane in nearest_planes:
problem.add_plane_constraint(plane_point, nearest_plane)
return problem
# 求解优化问题函数
def solve_optimization(problem):
# 使用LM算法求解非线性优化问题
optimized_state = problem.solve()
# 更新IMU偏置(可选)
optimized_state.imu_bias = update_imu_bias(problem)
return optimized_state
# 更新局部地图函数
def update_local_map(local_map, points, pose):
# 将点云变换到全局坐标系
global_points = transform_points(points, pose)
# 增量式更新地图
for point in global_points:
local_map.insert_point(point)
# 地图维护(如体素滤波、点云密度控制)
local_map.maintain()
主要数据结构
python
# 状态向量结构
class State:
def __init__(self):
self.pose = SE3() # 位姿 (旋转+平移)
self.velocity = Vector3() # 速度
self.imu_bias = IMUBias() # IMU偏置
# IMU偏置结构
class IMUBias:
def __init__(self):
self.gyro_bias = Vector3() # 陀螺仪偏置
self.acc_bias = Vector3() # 加速度计偏置
# 特征结构
class Features:
def __init__(self, edges, planes):
self.edges = edges # 边缘点
self.planes = planes # 平面点
# 增量式地图结构
class IncrementalMap:
def __init__(self):
self.tree = IKDTree() # 增量式KD树
self.voxels = VoxelGrid() # 体素网格
def insert_point(self, point):
self.tree.insert(point)
self.voxels.update(point)
def maintain(self):
self.tree.prune_old_points()
self.voxels.filter_dense_regions()
这个伪代码展示了Faster LIO的核心建图流程,包括IMU预积分、点云去畸变、特征提取、紧耦合优化和地图更新等关键步骤。实际实现中,还会有更多的细节处理和优化策略,但这个框架涵盖了算法的主要思想和工作流程。