AI大模型应用开发-用LangChain构建带Agen流程的RAG系统

随着大模型(LLM)能力越来越强,RAG(Retrieval Augmented Generation,检索增强生成)技术成为增强大模型知识准确性的关键手段。

通过检索实时数据、外部文档,模型能回答更多基于事实的问题,降低"幻觉"概率。

而 LangChain 的 LangGraph 能将 LLM、RAG、工具调用(Tools)整合成一个智能 Agent 流程图,极大提升了问答系统的动态能力。

本文通过一个完整示例,展示如何用 LangChain 构建一个「RAG + Agent」的问答系统,代码可直接复用,帮助大家快速落地智能应用。

工程结构

text 复制代码
llm_env.py          # 初始化 LLM
rag_agent.py        # 结合 RAG 与 Agent 的主逻辑

初始化 LLM

首先通过 llm_env.py 初始化一个 LLM 模型对象,供整个流程使用:

python 复制代码
from langchain.chat_models import init_chat_model

llm = init_chat_model("gpt-4o-mini", model_provider="openai")

RAG + Agent 系统搭建

导入依赖
python 复制代码
import os
import sys
import time

sys.path.append(os.getcwd())

from llm_set import llm_env
from langchain.embeddings import OpenAIEmbeddings
from langchain_postgres import PGVector
from langchain_community.document_loaders import WebBaseLoader
from langchain_core.documents import Document
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langgraph.graph import MessagesState, StateGraph
from langchain_core.tools import tool
from langchain_core.messages import HumanMessage, SystemMessage
from langgraph.prebuilt import ToolNode, tools_condition
from langgraph.graph import END
from langgraph.checkpoint.postgres import PostgresSaver
初始化 LLM 与 Embedding
python 复制代码
llm = llm_env.llm

embeddings = OpenAIEmbeddings(model="text-embedding-3-large")
初始化向量数据库
python 复制代码
vector_store = PGVector(
    embeddings=embeddings,
    collection_name="my_rag_agent_docs",
    connection="postgresql+psycopg2://postgres:123456@localhost:5433/langchainvector",
)
加载网页文档
python 复制代码
url = "https://www.cnblogs.com/chenyishi/p/18926783"
loader = WebBaseLoader(
    web_paths=(url,),
)
docs = loader.load()
for doc in docs:
    doc.metadata["source"] = url
文本分割 & 入库
python 复制代码
text_splitter = RecursiveCharacterTextSplitter(chunk_size=200, chunk_overlap=50)
all_splits = text_splitter.split_documents(docs)

existing = vector_store.similarity_search(url, k=1, filter={"source": url})
if not existing:
    _ = vector_store.add_documents(documents=all_splits)
    print("文档向量化完成")

定义 RAG 检索工具

通过 @tool 装饰器,定义一个文档检索工具,供 Agent 动态调用:

python 复制代码
@tool(response_format="content_and_artifact")
def retrieve(query: str) -> tuple[str, dict]:
    """Retrieve relevant documents from the vector store."""
    retrieved_docs = vector_store.similarity_search(query, k=2)
    if not retrieved_docs:
        return "No relevant documents found.", {}
    return "\n\n".join(
        (f"Source: {doc.metadata}\n" f"Content: {doc.page_content}")
        for doc in retrieved_docs
    ), retrieved_docs

定义 Agent Graph 节点

LLM 调用工具节点
python 复制代码
def query_or_respond(state: MessagesState):
    llm_with_tools = llm.bind_tools([retrieve])
    response = llm_with_tools.invoke(state["messages"])
    return {"messages": [response]}
工具节点
python 复制代码
tools = ToolNode([retrieve])
生成响应节点
python 复制代码
def generate(state: MessagesState):
    recent_tool_messages = []
    for message in reversed(state["messages"]):
        if message.type == "tool":
            recent_tool_messages.append(message)
        else:
            break

    tool_messages = recent_tool_messages[::-1]

    system_message_content = "\n\n".join(doc.content for doc in tool_messages)

    conversation_messages = [
        message
        for message in state["messages"]
        if message.type in ("human", "system")
        or (message.type == "ai" and not message.tool_calls)
    ]
    prompt = [SystemMessage(system_message_content)] + conversation_messages

    response = llm.invoke(prompt)
    return {"messages": [response]}

组装 Agent 流程图

python 复制代码
graph_builder = StateGraph(MessagesState)
graph_builder.add_node(query_or_respond)
graph_builder.add_node(tools)
graph_builder.add_node(generate)

graph_builder.set_entry_point("query_or_respond")
graph_builder.add_conditional_edges(
    "query_or_respond",
    tools_condition,
    path_map={END: END, "tools": "tools"},
)
graph_builder.add_edge("tools", "generate")
graph_builder.add_edge("generate", END)

启用 Checkpoint & 运行流程

数据库存储器
python 复制代码
DB_URI = "postgresql://postgres:123456@localhost:5433/langchaindemo?sslmode=disable"

with PostgresSaver.from_conn_string(DB_URI) as checkpointer:
    checkpointer.setup()

    graph = graph_builder.compile(checkpointer=checkpointer)
启动交互循环
python 复制代码
input_thread_id = input("输入thread_id:")
time_str = time.strftime("%Y%m%d", time.localtime())
config = {"configurable": {"thread_id": f"rag-{time_str}-demo-{input_thread_id}"}}

print("输入问题,输入 exit 退出。")
while True:
    query = input("你: ")
    if query.strip().lower() == "exit":
        break
    response = graph.invoke({"messages": [HumanMessage(content=query)]}, config=config)
    print(response)

总结

本文完整展示了如何用 LangChain + LangGraph,结合:

LLM(大模型)

Embedding 检索(RAG)

Agent 动态调用工具

流程图编排

Checkpoint 存储

构建一个智能问答系统。通过将工具(RAG 检索)和 Agent 机制结合,可以让 LLM 在需要的时候 自主调用检索能力,有效增强对知识的引用能力,解决"幻觉"问题,具备很好的落地应用价值。