neo4j导入csv文件

1、我有两个节点,分别是Person和 Moive,有 Person-[:ACTED_IN]->Moive (ACTED_IN是参演关系,表示某个人参演了某个电影),Person-[:DIRECTED]->Moive (DIRECTED表示是执导关系,表示某个人执导了某部电影),Person-[:REVIEWED]->Moive (REVIEWED是编剧关系,表示某个人是某部电影的编剧),Person-[:FOLLOWS]->Person(FOLLOWS是关注关系,表示某个人关注了另一个人)

2、首先导入Node节点的csv文件,首先 csv文件必须要放在 neo4j安装目录的import文件夹下

bash 复制代码
LOAD CSV WITH HEADERS FROM 'file:///person.csv' AS row
CREATE (n:Person {personId:row.personId ,name: row.name, born: toInteger(row.born)})


LOAD CSV WITH HEADERS FROM 'file:///movie.csv' AS row
CREATE (n:Movie {movieId:row.movieId,title: row.title, votes: toInteger(row.votes),tagline:row.tagline,released:toInteger(row.released)})

我本地的数据路径如下

3、导入关系文件

bash 复制代码
//参演
LOAD CSV WITH HEADERS FROM 'file:///r_ACTED_IN_person_2_moive.csv' AS row
MATCH (p:Person {name: row.`:START_ID`})
MATCH (m:Movie {tagline: row.`:END_ID`})
MERGE (p)-[r:ACTED_IN]->(m)
SET r.roles = row.roles

//指导
LOAD CSV WITH HEADERS FROM 'file:///r_DIRECTED_person_2_moive.csv' AS row
MATCH (p:Person {name: row.`:START_ID`})
MATCH (m:Movie {tagline: row.`:END_ID`})
MERGE (p)-[r:DIRECTED]->(m)

//REVIEWED 编剧
LOAD CSV WITH HEADERS FROM 'file:///r_REVIEWED_person_2_movie.csv' AS row
MATCH (p:Person {name: row.`:START_ID`})
MATCH (m:Movie {tagline: row.`:END_ID`})
MERGE (p)-[r:REVIEWED]->(m)
SET r.summary = row.summary ,r.rating = row.rating

//关注
LOAD CSV WITH HEADERS FROM 'file:///r_FOLLOWS_person_2_person.csv' AS row
MATCH (p:Person {name: row.`:START_ID`})
MATCH (m:Person {name: row.`:END_ID`})
MERGE (p)-[r:FOLLOWS]->(m)

3、导入完成后,可以看到如下

4、如果想导出可以直接执行的csv文件,首先要先写match语句,如下(适合数据量不大的情况)

bash 复制代码
MATCH (p:Person)-[r:ACTED_IN]->(m:Movie)
RETURN 
     p.name AS `:START_ID`, 
     'ACTED_IN' AS `:TYPE`, 
     m.tagline AS `:END_ID`, 
     r.roles AS roles

MATCH (p:Person)-[r:DIRECTED]->(m:Movie)
RETURN 
     p.name AS `:START_ID`, 
     'DIRECTED' AS `:TYPE`, 
     m.tagline AS `:END_ID` 

MATCH (p:Person)-[r:REVIEWED]->(m:Movie)
RETURN 
     p.name AS `:START_ID`, 
     'REVIEWED' AS `:TYPE`, 
     m.tagline AS `:END_ID`,
     r.summary as summary,
     r.rating as rating

MATCH (p:Person)-[r:FOLLOWS]->(m:Person)
RETURN 
     p.name AS `:START_ID`, 
     'FOLLOWS' AS `:TYPE`, 
     m.name AS `:END_ID`
相关推荐
追光天使1 天前
Mac 安装Neo4j教程
macos·neo4j
二饭2 天前
使用Docker安装Neo4j
docker·容器·neo4j
蒋星熠3 天前
TensorFlow与PyTorch深度对比分析:从基础原理到实战选择的完整指南
人工智能·pytorch·python·深度学习·ai·tensorflow·neo4j
好开心啊没烦恼3 天前
图数据库:基于历史学科的全球历史知识图谱构建,使用Neo4j图数据库实现中国历史与全球历史的关联查询。
大数据·数据库·python·数据挖掘·数据分析·知识图谱·neo4j
vv_5013 天前
Langchain+Neo4j+Agent 的结合案例-电商销售
人工智能·langchain·agent·neo4j
麦麦大数据6 天前
D018 vue+django 旅游图谱推荐问答系统|neo4j数据库|智能问答
vue.js·django·echarts·知识图谱·旅游·neo4j·智能问答
麦麦大数据8 天前
D017 vue+django+neo4j音乐知识图谱推荐可视化分析系统|带管理员角色+爬虫
vue.js·数据分析·django·知识图谱·neo4j·推荐算法
tianyuanwo8 天前
全面掌握 Py2neo 与 Neo4j:从容器化部署到高级应用实战
neo4j·图数据库·py2neo
nandao1589 天前
springBoot 集成Neo4j 实战演示
java·spring boot·neo4j
Hooray119 天前
protege+Neo4j+前端可视化知识图谱项目(教育领域)
人工智能·知识图谱·neo4j