neo4j导入csv文件

1、我有两个节点,分别是Person和 Moive,有 Person-[:ACTED_IN]->Moive (ACTED_IN是参演关系,表示某个人参演了某个电影),Person-[:DIRECTED]->Moive (DIRECTED表示是执导关系,表示某个人执导了某部电影),Person-[:REVIEWED]->Moive (REVIEWED是编剧关系,表示某个人是某部电影的编剧),Person-[:FOLLOWS]->Person(FOLLOWS是关注关系,表示某个人关注了另一个人)

2、首先导入Node节点的csv文件,首先 csv文件必须要放在 neo4j安装目录的import文件夹下

bash 复制代码
LOAD CSV WITH HEADERS FROM 'file:///person.csv' AS row
CREATE (n:Person {personId:row.personId ,name: row.name, born: toInteger(row.born)})


LOAD CSV WITH HEADERS FROM 'file:///movie.csv' AS row
CREATE (n:Movie {movieId:row.movieId,title: row.title, votes: toInteger(row.votes),tagline:row.tagline,released:toInteger(row.released)})

我本地的数据路径如下

3、导入关系文件

bash 复制代码
//参演
LOAD CSV WITH HEADERS FROM 'file:///r_ACTED_IN_person_2_moive.csv' AS row
MATCH (p:Person {name: row.`:START_ID`})
MATCH (m:Movie {tagline: row.`:END_ID`})
MERGE (p)-[r:ACTED_IN]->(m)
SET r.roles = row.roles

//指导
LOAD CSV WITH HEADERS FROM 'file:///r_DIRECTED_person_2_moive.csv' AS row
MATCH (p:Person {name: row.`:START_ID`})
MATCH (m:Movie {tagline: row.`:END_ID`})
MERGE (p)-[r:DIRECTED]->(m)

//REVIEWED 编剧
LOAD CSV WITH HEADERS FROM 'file:///r_REVIEWED_person_2_movie.csv' AS row
MATCH (p:Person {name: row.`:START_ID`})
MATCH (m:Movie {tagline: row.`:END_ID`})
MERGE (p)-[r:REVIEWED]->(m)
SET r.summary = row.summary ,r.rating = row.rating

//关注
LOAD CSV WITH HEADERS FROM 'file:///r_FOLLOWS_person_2_person.csv' AS row
MATCH (p:Person {name: row.`:START_ID`})
MATCH (m:Person {name: row.`:END_ID`})
MERGE (p)-[r:FOLLOWS]->(m)

3、导入完成后,可以看到如下

4、如果想导出可以直接执行的csv文件,首先要先写match语句,如下(适合数据量不大的情况)

bash 复制代码
MATCH (p:Person)-[r:ACTED_IN]->(m:Movie)
RETURN 
     p.name AS `:START_ID`, 
     'ACTED_IN' AS `:TYPE`, 
     m.tagline AS `:END_ID`, 
     r.roles AS roles

MATCH (p:Person)-[r:DIRECTED]->(m:Movie)
RETURN 
     p.name AS `:START_ID`, 
     'DIRECTED' AS `:TYPE`, 
     m.tagline AS `:END_ID` 

MATCH (p:Person)-[r:REVIEWED]->(m:Movie)
RETURN 
     p.name AS `:START_ID`, 
     'REVIEWED' AS `:TYPE`, 
     m.tagline AS `:END_ID`,
     r.summary as summary,
     r.rating as rating

MATCH (p:Person)-[r:FOLLOWS]->(m:Person)
RETURN 
     p.name AS `:START_ID`, 
     'FOLLOWS' AS `:TYPE`, 
     m.name AS `:END_ID`
相关推荐
虹科网络安全15 小时前
艾体宝产品 | 基准测试:ArangoDB性能碾压Neo4j,速度最高提升8倍!
数据库·neo4j
小高求学之路2 天前
Neo4j - 为什么需要图数据库
数据库·neo4j
小高求学之路2 天前
eo4j 图数据库备忘单
数据库·neo4j
郭庆汝3 天前
Neo4j数据库中批量插入数据(数据在.csv文件中)
数据库·neo4j
serve the people3 天前
tensorflow 零基础吃透:TensorFlow 稀疏张量(SparseTensor)的核心操作
人工智能·tensorflow·neo4j
serve the people4 天前
tensorflow 零基础吃透:TensorFlow 稀疏张量(SparseTensor)的核心用法
人工智能·tensorflow·neo4j
serve the people4 天前
tensorflow 零基础吃透:RaggedTensor 的不规则形状与广播机制
人工智能·tensorflow·neo4j
serve the people4 天前
tensorflow 零基础吃透:RaggedTensor 的底层编码原理
人工智能·tensorflow·neo4j
MasonYyp5 天前
简单使用FalkorDB和Neo4j图数据库
数据库·neo4j
黑客思维者6 天前
XGW-9000系列高端新能源电站边缘网关技术可行性分析报告V2
neo4j