【第一章:人工智能基础】04.数学建模基本方法-(3)概率与统计基础

第一章 人工智能基础

第四部分:数学建模基本方法

第三节:概率与统计基础

内容:条件概率、贝叶斯定理、分布类型及其应用。

【漫话机器学习系列】188.概率相关概念详解(Notions Of Probility)_在b发生的情况下a发生的概率和在b发生的情况下a不发生的概率的和为多少-CSDN博客


一、基本概念

1. 概率(Probability)

概率是描述某事件发生的可能性,取值范围在 0, 1 之间。

  • 频率派定义:大量重复实验中某事件发生的频率趋于某值。

  • 公理化定义(柯尔莫哥洛夫)

    • 非负性:P(A) ≥ 0

    • 规范性:P(Ω) = 1

    • 可加性:若 A 和 B 互斥,则 P(A ∪ B) = P(A) + P(B)


二、条件概率与独立性

1. 条件概率

表示事件 A 在事件 B 发生的条件下发生的概率。

公式:

2. 事件独立性

两个事件 A 与 B 独立 当且仅当:


三、贝叶斯定理(Bayes Theorem)

贝叶斯定理用于已知结果推测原因,是机器学习中分类模型(如朴素贝叶斯)的核心。

1. 全概率公式(Total Probability Theorem)

若事件 构成样本空间 Ω 的划分,且事件 A 可由这些事件引起,则:

2. 贝叶斯定理公式:
应用示例:医疗检测
  • 某种疾病患病率为 1%,检测准确率为 99%

  • 检测为阳性的情况下,患者真的患病的概率是多少?

贝叶斯定理可帮助在假阳性/阴性影响下推断真实情况。


四、常见概率分布及应用

分布名称 类型 应用场景 参数
伯努利分布 离散 二分类(如是否成功) p:成功概率
二项分布 离散 n 次独立伯努利试验成功次数 n, p
几何分布 离散 首次成功试验次数 p
泊松分布 离散 单位时间事件发生次数(稀有事件) λ
均匀分布 连续 均匀分布区间取值 a, b
正态分布(高斯) 连续 噪声建模、人群身高、误差分析等 μ, σ²
指数分布 连续 事件间隔时间 λ

五、统计量与推断

  • 期望值(期望)

  • 方差

  • 协方差与相关系数:衡量变量之间的线性关系。


六、在人工智能中的应用

概念 应用示例
条件概率 语言模型、图模型
贝叶斯定理 朴素贝叶斯分类器、贝叶斯网络
概率分布 模拟数据、建模误差
正态分布 神经网络权重初始化、高斯噪声模拟
指数分布 强化学习中的事件间隔建模

七、小结表格

内容 要点
条件概率 用于后验推理
贝叶斯定理 P(原因)
概率分布 建模变量分布形式
正态分布 中心极限定理支持其广泛性
统计量 描述变量集中趋势与波动性
相关推荐
TGITCIC1 小时前
AI Agent竞争进入下半场:模型只是入场券,系统架构决定胜负
人工智能·ai产品经理·ai产品·ai落地·大模型架构·ai架构·大模型产品
斐夷所非3 小时前
人工智能 AI. 机器学习 ML. 深度学习 DL. 神经网络 NN 的区别与联系
人工智能
Funny_AI_LAB5 小时前
OpenAI DevDay 2025:ChatGPT 进化为平台,开启 AI 应用新纪元
人工智能·ai·语言模型·chatgpt
深瞳智检5 小时前
YOLO算法原理详解系列 第002期-YOLOv2 算法原理详解
人工智能·算法·yolo·目标检测·计算机视觉·目标跟踪
深眸财经6 小时前
机器人再冲港交所,优艾智合能否破行业困局?
人工智能·机器人
小宁爱Python6 小时前
从零搭建 RAG 智能问答系统1:基于 LlamaIndex 与 Chainlit实现最简单的聊天助手
人工智能·后端·python
新知图书7 小时前
Encoder-Decoder架构的模型简介
人工智能·架构·ai agent·智能体·大模型应用开发·大模型应用
大模型真好玩7 小时前
低代码Agent开发框架使用指南(一)—主流开发框架对比介绍
人工智能·低代码·agent
杨小码不BUG7 小时前
Davor的北极探险资金筹集:数学建模与算法优化(洛谷P4956)
c++·算法·数学建模·信奥赛·csp-j/s
tzc_fly7 小时前
AI作为操作系统已经不能阻挡了,尽管它还没来
人工智能·chatgpt