【第一章:人工智能基础】04.数学建模基本方法-(3)概率与统计基础

第一章 人工智能基础

第四部分:数学建模基本方法

第三节:概率与统计基础

内容:条件概率、贝叶斯定理、分布类型及其应用。

【漫话机器学习系列】188.概率相关概念详解(Notions Of Probility)_在b发生的情况下a发生的概率和在b发生的情况下a不发生的概率的和为多少-CSDN博客


一、基本概念

1. 概率(Probability)

概率是描述某事件发生的可能性,取值范围在 0, 1 之间。

  • 频率派定义:大量重复实验中某事件发生的频率趋于某值。

  • 公理化定义(柯尔莫哥洛夫)

    • 非负性:P(A) ≥ 0

    • 规范性:P(Ω) = 1

    • 可加性:若 A 和 B 互斥,则 P(A ∪ B) = P(A) + P(B)


二、条件概率与独立性

1. 条件概率

表示事件 A 在事件 B 发生的条件下发生的概率。

公式:

2. 事件独立性

两个事件 A 与 B 独立 当且仅当:


三、贝叶斯定理(Bayes Theorem)

贝叶斯定理用于已知结果推测原因,是机器学习中分类模型(如朴素贝叶斯)的核心。

1. 全概率公式(Total Probability Theorem)

若事件 构成样本空间 Ω 的划分,且事件 A 可由这些事件引起,则:

2. 贝叶斯定理公式:
应用示例:医疗检测
  • 某种疾病患病率为 1%,检测准确率为 99%

  • 检测为阳性的情况下,患者真的患病的概率是多少?

贝叶斯定理可帮助在假阳性/阴性影响下推断真实情况。


四、常见概率分布及应用

分布名称 类型 应用场景 参数
伯努利分布 离散 二分类(如是否成功) p:成功概率
二项分布 离散 n 次独立伯努利试验成功次数 n, p
几何分布 离散 首次成功试验次数 p
泊松分布 离散 单位时间事件发生次数(稀有事件) λ
均匀分布 连续 均匀分布区间取值 a, b
正态分布(高斯) 连续 噪声建模、人群身高、误差分析等 μ, σ²
指数分布 连续 事件间隔时间 λ

五、统计量与推断

  • 期望值(期望)

  • 方差

  • 协方差与相关系数:衡量变量之间的线性关系。


六、在人工智能中的应用

概念 应用示例
条件概率 语言模型、图模型
贝叶斯定理 朴素贝叶斯分类器、贝叶斯网络
概率分布 模拟数据、建模误差
正态分布 神经网络权重初始化、高斯噪声模拟
指数分布 强化学习中的事件间隔建模

七、小结表格

内容 要点
条件概率 用于后验推理
贝叶斯定理 P(原因)
概率分布 建模变量分布形式
正态分布 中心极限定理支持其广泛性
统计量 描述变量集中趋势与波动性
相关推荐
张子夜 iiii17 分钟前
深度学习-----《PyTorch神经网络高效训练与测试:优化器对比、激活函数优化及实战技巧》
人工智能·pytorch·深度学习
小星星爱分享19 分钟前
抖音多账号运营新范式:巨推AI如何解锁流量矩阵的商业密码
人工智能·线性代数·矩阵
aneasystone本尊41 分钟前
剖析 GraphRAG 的项目结构
人工智能
AI 嗯啦43 分钟前
计算机视觉--opencv(代码详细教程)(三)--图像形态学
人工智能·opencv·计算机视觉
鱼香l肉丝1 小时前
第四章-RAG知识库进阶
人工智能
邵洛1 小时前
阿里推出的【 AI Qoder】,支持MCP工具生态扩展
人工智能
CPU NULL1 小时前
Spring拦截器中@Resource注入为null的问题
java·人工智能·后端·spring
老顾聊技术1 小时前
深度解析比微软的GraphRAG简洁很多的LightRAG,一看就懂
人工智能
盼小辉丶1 小时前
PyTorch实战(1)——深度学习概述
人工智能·pytorch·深度学习
魔乐社区1 小时前
MiniCPM-V4.0开源并上线魔乐社区,多模态能力进化,手机可用,还有最全CookBook!
人工智能·深度学习·开源·大模型