【一天一个知识点】RAG构架的第四步:设计问答链路与响应控制(Response Chain & Output Control)

🔧 第四步:设计问答链路与响应控制(Response Chain & Output Control)


🎯 目标:

在生成器模型的基础上,构建完整的问答链路,确保输出结果准确、可控、可溯源,提升实际可用性与用户信任度。


🧩 关键内容:

1️⃣ 问答链路设计

构建从用户输入到最终答案输出的流程闭环。

  • 输入处理:对用户输入进行标准化、意图识别(如分类、实体抽取、QA/Chat分流)。

  • 文档拼接逻辑:对检索器返回的多个文档片段排序、截断、清洗、构建 Prompt。

  • 生成式回答:将拼接好的上下文与用户问题传入生成器(如 GPT-4),输出自然语言回答。

  • 输出验证(可选):通过规则或模型判断回答质量,如是否包含幻觉、是否引用文档内容。

  • 反馈机制:记录用户点击、评分或纠错反馈,形成闭环优化(用于第五步迭代训练)。


2️⃣ 控制生成内容的行为(Output Control)
  • 事实性保障

    • Prompt 加入说明:"仅基于以下资料回答,如资料中没有请回复'未提供相关信息'。"

    • 模型输出附带引用标注,如:[文档1]、[文档2]

  • 结构化输出

    • 如果下游系统对接需要结构,可采用 JSON 格式返回。例如:

      复制代码
      复制代码
      {
        "answer": "XXX",
        "source": ["文档1", "文档3"]
      }
  • 风格控制(Prompt 模板)

    • 正式/简洁/科普/对话式等风格可通过 few-shot 示例控制;

    • 例子:

      复制代码
      复制代码
      使用以下资料用简洁正式风格回答问题。
      资料:
      - 文档1:......
      - 文档2:......
      问题:......
      回答:
  • 未知情况处理

    • 防止"编造"回答,通过提示"若无法确定,请直接回复'资料未提及'。"

📊 示例流程图

复制代码
复制代码
+-------------------+          +------------------+
|   用户问题输入    |          | 检索器检索文档    |
+---------+---------+          +--------+---------+
          |                             |
          v                             v
     文本规范化              多文档拼接与构建Prompt
          |                             |
          +-------------+---------------+
                        |
                        v
              ✨生成器(如GPT-4)
                        |
                        v
           输出答案(带来源,结构化)
                        |
                        v
              ✅ 输出控制与验证

✅ 小贴士:

  • 推荐使用 Chain-of-Thought 方式让模型更具解释性;

  • 可以加入 Reranker 模块,对回答候选项进行二次排序;

  • 输出可带上检索到的片段或"来源列表"增强信任感。

相关推荐
小饼干超人4 小时前
【cs336学习笔记】[第6课]内核优化与Triton框架应用
深度学习·大模型·推理加速
小饼干超人8 小时前
详解triton.jit及PTX
人工智能·大模型·推理加速
JolyouLu12 小时前
LangChain4J-基础(整合Spring、RAG、MCP、向量数据库、提示词、流式输出)
大模型·提示词·向量数据库·rag·mcp·langchain4j
dundunmm13 小时前
【每天一个知识点】训推一体机
人工智能·大模型·硬件·软件·训练·推理
今天也要学习吖1 天前
Azure TTS Importer:一键导入,将微软TTS语音接入你的阅读软件!
人工智能·学习·microsoft·ai·大模型·aigc·azure
魔乐社区2 天前
OpenAI重新开源!gpt-oss-20b适配昇腾并上线魔乐社区
人工智能·gpt·深度学习·开源·大模型
AI扶我青云志3 天前
Milvus 安装和启动指南
人工智能·云原生·eureka·大模型
xcLeigh3 天前
文心一言4.5开源模型实战:ERNIE-4.5-0.3B轻量化部署与效能突破
人工智能·开源·大模型·文心一言·ernie·轻量化部署
AwhiteV4 天前
利用图数据库高效解决 Text2sql 任务中表结构复杂时占用过多大模型上下文的问题
数据库·人工智能·自然语言处理·oracle·大模型·text2sql
大千AI助手4 天前
GitHub Copilot:AI编程助手的架构演进与真实世界影响
人工智能·深度学习·大模型·github·copilot·ai编程·codex