【一天一个知识点】RAG构架的第四步:设计问答链路与响应控制(Response Chain & Output Control)

🔧 第四步:设计问答链路与响应控制(Response Chain & Output Control)


🎯 目标:

在生成器模型的基础上,构建完整的问答链路,确保输出结果准确、可控、可溯源,提升实际可用性与用户信任度。


🧩 关键内容:

1️⃣ 问答链路设计

构建从用户输入到最终答案输出的流程闭环。

  • 输入处理:对用户输入进行标准化、意图识别(如分类、实体抽取、QA/Chat分流)。

  • 文档拼接逻辑:对检索器返回的多个文档片段排序、截断、清洗、构建 Prompt。

  • 生成式回答:将拼接好的上下文与用户问题传入生成器(如 GPT-4),输出自然语言回答。

  • 输出验证(可选):通过规则或模型判断回答质量,如是否包含幻觉、是否引用文档内容。

  • 反馈机制:记录用户点击、评分或纠错反馈,形成闭环优化(用于第五步迭代训练)。


2️⃣ 控制生成内容的行为(Output Control)
  • 事实性保障

    • Prompt 加入说明:"仅基于以下资料回答,如资料中没有请回复'未提供相关信息'。"

    • 模型输出附带引用标注,如:[文档1]、[文档2]

  • 结构化输出

    • 如果下游系统对接需要结构,可采用 JSON 格式返回。例如:

      复制代码
      复制代码
      {
        "answer": "XXX",
        "source": ["文档1", "文档3"]
      }
  • 风格控制(Prompt 模板)

    • 正式/简洁/科普/对话式等风格可通过 few-shot 示例控制;

    • 例子:

      复制代码
      复制代码
      使用以下资料用简洁正式风格回答问题。
      资料:
      - 文档1:......
      - 文档2:......
      问题:......
      回答:
  • 未知情况处理

    • 防止"编造"回答,通过提示"若无法确定,请直接回复'资料未提及'。"

📊 示例流程图

复制代码
复制代码
+-------------------+          +------------------+
|   用户问题输入    |          | 检索器检索文档    |
+---------+---------+          +--------+---------+
          |                             |
          v                             v
     文本规范化              多文档拼接与构建Prompt
          |                             |
          +-------------+---------------+
                        |
                        v
              ✨生成器(如GPT-4)
                        |
                        v
           输出答案(带来源,结构化)
                        |
                        v
              ✅ 输出控制与验证

✅ 小贴士:

  • 推荐使用 Chain-of-Thought 方式让模型更具解释性;

  • 可以加入 Reranker 模块,对回答候选项进行二次排序;

  • 输出可带上检索到的片段或"来源列表"增强信任感。

相关推荐
WooaiJava21 分钟前
AI 智能助手项目面试技术要点总结(前端部分)
javascript·大模型·html5
爱喝白开水a40 分钟前
前端AI自动化测试:brower-use调研让大模型帮你做网页交互与测试
前端·人工智能·大模型·prompt·交互·agent·rag
落霞的思绪1 小时前
GIS大模型RAG知识库
agent·rag
梵得儿SHI6 小时前
(第十篇)Spring AI 核心技术攻坚全梳理:企业级能力矩阵 + 四大技术栈攻坚 + 性能优化 Checklist + 实战项目预告
java·人工智能·spring·rag·企业级ai应用·springai技术体系·多模态和安全防护
“负拾捌”6 小时前
python + uniapp 结合腾讯云实现实时语音识别功能(WebSocket)
python·websocket·微信小程序·uni-app·大模型·腾讯云·语音识别
Java后端的Ai之路6 小时前
【RAG技术】- RAG系统调优手段之GraphRAG(全局视野)
人工智能·知识库·调优·rag·graphrag
王建文go15 小时前
RAG(宠物健康AI)
人工智能·宠物·rag
韦东东18 小时前
RAGFlow v0.20的Agent重大更新:text2sql的Agent案例测试
人工智能·大模型·agent·text2sql·ragflow
OpenBayes19 小时前
教程上新|DeepSeek-OCR 2公式/表格解析同步改善,以低视觉token成本实现近4%的性能跃迁
人工智能·深度学习·目标检测·机器学习·大模型·ocr·gpu算力
PPIO派欧云19 小时前
PPIO上线GLM-OCR:0.9B参数SOTA性能,支持一键部署
人工智能·ai·大模型·ocr·智谱