Pytorch/CUDA——flash-attn 库编译的 gcc 版本问题

flash-attn 是一个高性能 CUDA 加速库,编译时 gcc(或 g++)版本是有严格要求的 ,因为它需要和 NVIDIA CUDA Toolkit 的版本匹配。

如果 gcc 太新或太旧,nvcc 会直接报错 或编译出来的不兼容。


下面是通用的经验总结(你可以对照看你机器上的环境):


1️⃣ 核心点:nvcc 只支持特定版本的 gcc

NVIDIA 官方 CUDA Toolkit 对应支持的 gcc 范围:

CUDA 版本 推荐 gcc
CUDA 11.6 gcc 9.x (或 gcc 7.x ~ 9.x)
CUDA 11.7 gcc 9.x ~ 10.x
CUDA 11.8 gcc 9.x ~ 11.x
CUDA 12.0 gcc 10.x ~ 11.x
CUDA 12.1+ gcc 11.x (12.x 往往也可以)

如果你的 gcc 版本太新(例如 gcc 13),nvcc 可能直接报错:

复制代码
unsupported GNU version! gcc versions later than 11 are not supported!

2️⃣ flash-attn 的编译特点

flash-attn 的核心是 CUDA C++,底层依赖 PyTorch 的 torch.utils.cpp_extension

  • 必须 nvccgcc 能正常一起工作。
  • 如果 Python 对应的 torch 是用某个 CUDA 编译的,必须和你本机的 nvcc 版本匹配。
  • flash-attn 不支持非 nvcc 的替代方案,编译阶段一定走 CUDA

3️⃣ 如何查看当前版本

  • 查看 gcc

    bash 复制代码
    gcc --version
  • 查看 nvcc

    bash 复制代码
    nvcc --version
  • 查看 torch 的 CUDA:

    python 复制代码
    python -c "import torch; print(torch.version.cuda)"

这三者必须能对上号:

  • 例如:torch 是 CUDA 11.8,则系统的 nvcc 应该是 CUDA 11.8,gcc 最好是 9~11。

4️⃣ 解决办法

相关推荐
科大饭桶11 小时前
昇腾AI自学Day2-- 深度学习基础工具与数学
人工智能·pytorch·python·深度学习·numpy
weixin_5079299113 小时前
第G7周:Semi-Supervised GAN 理论与实战
人工智能·pytorch·深度学习
weixin_4569042715 小时前
一文讲清楚Pytorch 张量、链式求导、正向传播、反向求导、计算图等基础知识
人工智能·pytorch·学习
盼小辉丶1 天前
Transformer实战(4)——从零开始构建Transformer
pytorch·深度学习·transformer
之歆1 天前
Al大模型-本地私有化部署大模型-大模型微调
人工智能·pytorch·ai作画
charlee441 天前
在本地部署Qwen大语言模型全过程总结
大模型·cuda·qwen·量化
失散131 天前
深度学习——02 PyTorch
人工智能·pytorch·深度学习
Re_draw_debubu1 天前
神经网络 小土堆pytorch记录
pytorch·神经网络·小土堆
coding者在努力2 天前
从零开始:用PyTorch实现线性回归模型
人工智能·pytorch·线性回归
云空2 天前
《基于Pytorch实现的声音分类 :网页解读》
人工智能·pytorch·分类