def create_react_agent(
model: Union[str, LanguageModelLike],
tools: Union[Sequence[Union[BaseTool, Callable, dict[str, Any]]], ToolNode],
*,
prompt: Optional[Prompt] = None,
response_format: Optional[
Union[StructuredResponseSchema, tuple[str, StructuredResponseSchema]]
] = None,
pre_model_hook: Optional[RunnableLike] = None, # 调用LLM前执行的处理模块
post_model_hook: Optional[RunnableLike] = None, # 调用LLM后执行的处理模块
state_schema: Optional[StateSchemaType] = None,
config_schema: Optional[Type[Any]] = None,
checkpointer: Optional[Checkpointer] = None, # 状态保存模块(如记忆、会话持久化)
store: Optional[BaseStore] = None,
interrupt_before: Optional[list[str]] = None, # 在某个节点之前中断
interrupt_after: Optional[list[str]] = None, # 在某个节点之后中断
debug: bool = False,
version: Literal["v1", "v2"] = "v2", # v1是单节点工具并行调用。v2 Send分布式
name: Optional[str] = None,
) -> CompiledGraph:
"""Creates an agent graph that calls tools in a loop until a stopping condition is met.
For more details on using `create_react_agent`, visit [Agents](https://langchain-ai.github.io/langgraph/agents/overview/) documentation.
Args:
model: The `LangChain` chat model that supports tool calling.
tools: A list of tools or a ToolNode instance.
If an empty list is provided, the agent will consist of a single LLM node without tool calling.
prompt: An optional prompt for the LLM. Can take a few different forms:
- str: This is converted to a SystemMessage and added to the beginning of the list of messages in state["messages"].
- SystemMessage: this is added to the beginning of the list of messages in state["messages"].
- Callable: This function should take in full graph state and the output is then passed to the language model.
- Runnable: This runnable should take in full graph state and the output is then passed to the language model.
response_format: An optional schema for the final agent output.
If provided, output will be formatted to match the given schema and returned in the 'structured_response' state key.
If not provided, `structured_response` will not be present in the output state.
Can be passed in as:
- an OpenAI function/tool schema,
- a JSON Schema,
- a TypedDict class,
- or a Pydantic class.
- a tuple (prompt, schema), where schema is one of the above.
The prompt will be used together with the model that is being used to generate the structured response.
!!! Important
`response_format` requires the model to support `.with_structured_output`
!!! Note
The graph will make a separate call to the LLM to generate the structured response after the agent loop is finished.
This is not the only strategy to get structured responses, see more options in [this guide](https://langchain-ai.github.io/langgraph/how-tos/react-agent-structured-output/).
pre_model_hook: An optional node to add before the `agent` node (i.e., the node that calls the LLM).
Useful for managing long message histories (e.g., message trimming, summarization, etc.).
Pre-model hook must be a callable or a runnable that takes in current graph state and returns a state update in the form of
```python
# At least one of `messages` or `llm_input_messages` MUST be provided
{
# If provided, will UPDATE the `messages` in the state
"messages": [RemoveMessage(id=REMOVE_ALL_MESSAGES), ...],
# If provided, will be used as the input to the LLM,
# and will NOT UPDATE `messages` in the state
"llm_input_messages": [...],
# Any other state keys that need to be propagated
...
}
```
!!! Important
At least one of `messages` or `llm_input_messages` MUST be provided and will be used as an input to the `agent` node.
The rest of the keys will be added to the graph state.
!!! Warning
If you are returning `messages` in the pre-model hook, you should OVERWRITE the `messages` key by doing the following:
```python
{
"messages": [RemoveMessage(id=REMOVE_ALL_MESSAGES), *new_messages]
...
}
```
post_model_hook: An optional node to add after the `agent` node (i.e., the node that calls the LLM).
Useful for implementing human-in-the-loop, guardrails, validation, or other post-processing.
Post-model hook must be a callable or a runnable that takes in current graph state and returns a state update.
!!! Note
Only available with `version="v2"`.
state_schema: An optional state schema that defines graph state.
Must have `messages` and `remaining_steps` keys.
Defaults to `AgentState` that defines those two keys.
config_schema: An optional schema for configuration.
Use this to expose configurable parameters via agent.config_specs.
checkpointer: An optional checkpoint saver object. This is used for persisting
the state of the graph (e.g., as chat memory) for a single thread (e.g., a single conversation).
store: An optional store object. This is used for persisting data
across multiple threads (e.g., multiple conversations / users).
interrupt_before: An optional list of node names to interrupt before.
Should be one of the following: "agent", "tools".
This is useful if you want to add a user confirmation or other interrupt before taking an action.
interrupt_after: An optional list of node names to interrupt after.
Should be one of the following: "agent", "tools".
This is useful if you want to return directly or run additional processing on an output.
debug: A flag indicating whether to enable debug mode.
version: Determines the version of the graph to create.
Can be one of:
- `"v1"`: The tool node processes a single message. All tool
calls in the message are executed in parallel within the tool node.
- `"v2"`: The tool node processes a tool call.
Tool calls are distributed across multiple instances of the tool
node using the [Send](https://langchain-ai.github.io/langgraph/concepts/low_level/#send)
API.
name: An optional name for the CompiledStateGraph.
This name will be automatically used when adding ReAct agent graph to another graph as a subgraph node -
particularly useful for building multi-agent systems.
Returns:
A compiled LangChain runnable that can be used for chat interactions.
The "agent" node calls the language model with the messages list (after applying the prompt).
If the resulting AIMessage contains `tool_calls`, the graph will then call the ["tools"][langgraph.prebuilt.tool_node.ToolNode].
The "tools" node executes the tools (1 tool per `tool_call`) and adds the responses to the messages list
as `ToolMessage` objects. The agent node then calls the language model again.
The process repeats until no more `tool_calls` are present in the response.
The agent then returns the full list of messages as a dictionary containing the key "messages".
```mermaid
sequenceDiagram
participant U as User
participant A as LLM
participant T as Tools
U->>A: Initial input
Note over A: Prompt + LLM
loop while tool_calls present
A->>T: Execute tools
T-->>A: ToolMessage for each tool_calls
end
A->>U: Return final state
```
Example:
```python
from langgraph.prebuilt import create_react_agent
def check_weather(location: str) -> str:
'''Return the weather forecast for the specified location.'''
return f"It's always sunny in {location}"
graph = create_react_agent(
"anthropic:claude-3-7-sonnet-latest",
tools=[check_weather],
prompt="You are a helpful assistant",
)
inputs = {"messages": [{"role": "user", "content": "what is the weather in sf"}]}
for chunk in graph.stream(inputs, stream_mode="updates"):
print(chunk)
```
"""
# 版本合规性判断:v1是工具并行执行,v2是每个tool_call一个Send事件(分布式并发)
if version not in ("v1", "v2"):
raise ValueError(
f"Invalid version {version}. Supported versions are 'v1' and 'v2'."
)
# 用户自定义了 state_schema。
if state_schema is not None:
# messages:Agent的对话历史。remaining_steps:允许的最多思考步数
required_keys = {"messages", "remaining_steps"}
# 如果需要结构化输出,状态里添加对应字段
if response_format is not None:
required_keys.add("structured_response")
# 使用 get_type_hints() 获取 schema 的所有字段名
schema_keys = set(get_type_hints(state_schema))
# 如果缺少上面定义的 required_keys 中任何字段,就抛出异常
if missing_keys := required_keys - set(schema_keys):
raise ValueError(f"Missing required key(s) {missing_keys} in state_schema")
# 自动设定默认 State Schema (如果用户未提供)
if state_schema is None:
# 如果用户没有自定义 state_schema,就使用默认的。如果用户启用了 response_format,说明最终需要结构化输出 -> 用 AgentStateWithStructuredResponse。否则就用基础的 AgentState (只包含 messages+remaining_steps )
state_schema = (
AgentStateWithStructuredResponse
if response_format is not None
else AgentState
)
# 工具准备阶段。将 tools 转换为 ToolNode
llm_builtin_tools: list[dict] = []
if isinstance(tools, ToolNode):
# 如果传进来的是已经构建好的 ToolNode 实例(LangGraph 的工具节点),直接取出其中注册的工具类
tool_classes = list(tools.tools_by_name.values())
tool_node = tools
# 否则,用户传入的是普通工具列表(函数、BaseTool 等)
else:
# 把其中是 dict 类型(即 OpenAI 风格工具 schema)的归入 llm_builtin_tools,后续要绑定到 LLM 上
llm_builtin_tools = [t for t in tools if isinstance(t, dict)]
# 其余转为 ToolNode 以供 Agent 控制调用
tool_node = ToolNode([t for t in tools if not isinstance(t, dict)])
# 再从 ToolNode 中提取真正的工具类用于绑定
tool_classes = list(tool_node.tools_by_name.values())
# 模型初始化。从字符串加载实际模型
if isinstance(model, str):
# 如果用户传的是字符串(如 "openai:gpt-4"),尝试通过 init_chat_model 初始化一个 LangChain 支持的模型
try:
from langchain.chat_models import ( # type: ignore[import-not-found]
init_chat_model,
)
# 若用户未安装 langchain,则抛出明确提示
except ImportError:
raise ImportError(
"Please install langchain (`pip install langchain`) to use '<provider>:<model>' string syntax for `model` parameter."
)
model = cast(BaseChatModel, init_chat_model(model))
# 判断是否启用工具调用 + 工具绑定到模型
tool_calling_enabled = len(tool_classes) > 0
# 如果模型本身支持绑定工具(例如 OpenAI 或 Claude 系模型)
if (
_should_bind_tools(model, tool_classes)
and len(tool_classes) > 0
or (len(llm_builtin_tools) > 0)
):
# 就把 tool_classes + llm_builtin_tools 一起绑定到模型中(以支持 ReAct 格式 tool_calls)
model = cast(BaseChatModel, model).bind_tools(tool_classes + llm_builtin_tools) # type: ignore[operator]
# 构建 model_runnable(带 prompt)
model_runnable = _get_prompt_runnable(prompt) | model
# 判断是否存在 return_direct 工具
# 有些工具被配置了 return_direct=True,一旦这些工具被调用,agent 就会直接停止执行,返回结果
# If any of the tools are configured to return_directly after running,
# our graph needs to check if these were called
should_return_direct = {t.name for t in tool_classes if t.return_direct}
# 判断当前是否还需要继续 agent loop(即是否需要再走一轮工具调用和 LLM)。
## 根据当前 agent 状态 state 和最新一次模型输出 response,判断是否要继续下一轮步骤(例如再次调用工具)
def _are_more_steps_needed(state: StateSchema, response: BaseMessage) -> bool:
# 先判断当前 LLM 输出 response 是否是 AIMessage 类型(只有 AIMessage 才会包含 tool_calls 字段)
has_tool_calls = isinstance(response, AIMessage) and response.tool_calls
# 判断 response 中所有 tool_call 的工具名字是否都在 should_return_direct 集合中(之前收集过)
all_tools_return_direct = (
all(call["name"] in should_return_direct for call in response.tool_calls)
if isinstance(response, AIMessage) # 如果是,说明这些工具被调用后应该立刻结束 Agent 执行。
else False # 如果不是 AIMessage 类型,直接返回 False
)
# 获取剩余可用的推理步数
remaining_steps = _get_state_value(state, "remaining_steps", None) # 从 state 中提取 remaining_steps(可用步数),用于控制 agent 不陷入死循环
# 是否是最后一步(is_last_step)
is_last_step = _get_state_value(state, "is_last_step", False) # 某些定制流程中,agent 会明确标记当前是否是最后一步(如来自外部控制),用于配合 remaining_steps=None 的情况
# 逻辑判断是否需要更多步骤
return (
# 情况 1:没有 remaining_steps 设定,但 is_last_step + 有工具调用
(remaining_steps is None and is_last_step and has_tool_calls)
# 情况 2:已经没有剩余步骤,并且所有工具都 return_direct
or (
remaining_steps is not None
and remaining_steps < 1
and all_tools_return_direct
)
# 只剩一步,且还有工具要调用
or (remaining_steps is not None and remaining_steps < 2 and has_tool_calls)
)
# 这个函数用于从当前 Agent 的状态中提取 LLM 输入用的 messages,并确保其格式合法。
def _get_model_input_state(state: StateSchema) -> StateSchema:
# 如果用户配置了 pre_model_hook(提示:用户可能想做对话压缩、裁剪等操作),就要优先使用其输出字段。
if pre_model_hook is not None:
# 优先使用 llm_input_messages,这是 pre_model_hook 专门生成给 LLM 的输入。如果没有,则 fallback 到原始 message
messages = (
_get_state_value(state, "llm_input_messages")
) or _get_state_value(state, "messages")
# 错误提示语,便于调试
error_msg = f"Expected input to call_model to have 'llm_input_messages' or 'messages' key, but got {state}"
# 如果没设置 pre_model_hook,则只从 messages 字段获取输入
else:
messages = _get_state_value(state, "messages")
error_msg = (
f"Expected input to call_model to have 'messages' key, but got {state}"
)
# 如果连 messages 都取不到,则说明状态结构有误,抛出异常
if messages is None:
raise ValueError(error_msg)
# 调用工具函数,验证 chat history 是否符合格式(角色、结构、长度等)
_validate_chat_history(messages)
# 如果 state 是 Pydantic 模型(BaseModel),直接以属性方式赋值
# we're passing messages under `messages` key, as this is expected by the prompt
if isinstance(state_schema, type) and issubclass(state_schema, BaseModel):
state.messages = messages # type: ignore
# 如果是 TypedDict 或普通字典,则用字典方式赋值
else:
state["messages"] = messages # type: ignore
# 返回更新过 messages 字段的状态
return state
# 定义模型节点 call_model 和异步版本 acall_model
def call_model(state: StateSchema, config: RunnableConfig) -> StateSchema:
# 先处理输入状态(确保 messages 字段正确)
state = _get_model_input_state(state)
# 调用模型,传入完整 state 和运行配置 config(比如 stop、timeout 等), 返回一个 AIMessage 类型响应(必须确保类型匹配)
response = cast(AIMessage, model_runnable.invoke(state, config))
# add agent name to the AIMessage
# 为返回的 AIMessage 添加 agent 的 name(便于多 Agent 系统区分消息来源)
response.name = name
# 如果根据返回内容判断还需要进一步步骤(比如工具调用),则插入一条"中间消息",表示 agent 还在处理中
if _are_more_steps_needed(state, response):
return {
"messages": [
AIMessage(
id=response.id, # id=response.id 保持一致,方便追踪
content="Sorry, need more steps to process this request.",
)
]
}
# 否则直接返回模型响应(以列表形式包装)
# We return a list, because this will get added to the existing list
return {"messages": [response]}
async def acall_model(state: StateSchema, config: RunnableConfig) -> StateSchema:
state = _get_model_input_state(state)
response = cast(AIMessage, await model_runnable.ainvoke(state, config))
# add agent name to the AIMessage
response.name = name
if _are_more_steps_needed(state, response):
return {
"messages": [
AIMessage(
id=response.id,
content="Sorry, need more steps to process this request.",
)
]
}
# We return a list, because this will get added to the existing list
return {"messages": [response]}
# 动态构造 input_schema(输入状态类型)
input_schema: StateSchemaType
# 如果设置了 pre_model_hook,就要支持 llm_input_messages 字段作为模型输入
if pre_model_hook is not None:
# 对于 Pydantic 类型 schema,检查是否是 Pydantic 模型
# Dynamically create a schema that inherits from state_schema and adds 'llm_input_messages'
if isinstance(state_schema, type) and issubclass(state_schema, BaseModel):
# For Pydantic schemas
# 引入 create_model 工具函数用于动态扩展字段
from pydantic import create_model
input_schema = create_model( # 创建一个新的 Pydantic 模型,继承用户传入的 state schema
"CallModelInputSchema",
llm_input_messages=(list[AnyMessage], ...), # 添加一个字段 llm_input_messages,类型为 list[AnyMessage]
__base__=state_schema, # 用于支持 pre_model_hook 输出的中间结果(不影响原始 messages)
)
else:
# 对于 TypedDict 类型 schema,如果不是 Pydantic,而是 TypedDict,则动态继承并添加新字段
# For TypedDict schemas
class CallModelInputSchema(state_schema): # type: ignore
llm_input_messages: list[AnyMessage] # Python 动态类型黑魔法:直接在函数中定义类,并给它加一个额外字段
input_schema = CallModelInputSchema
# 如果没有 pre_model_hook,直接用原始 state schema 作为输入 schema
else:
input_schema = state_schema
def generate_structured_response(
state: StateSchema, config: RunnableConfig
) -> StateSchema:
messages = _get_state_value(state, "messages")
structured_response_schema = response_format
if isinstance(response_format, tuple):
system_prompt, structured_response_schema = response_format
messages = [SystemMessage(content=system_prompt)] + list(messages)
model_with_structured_output = _get_model(model).with_structured_output(
cast(StructuredResponseSchema, structured_response_schema)
)
print("messages:", messages)
response = model_with_structured_output.invoke(messages, config)
return {"structured_response": response}
async def agenerate_structured_response(
state: StateSchema, config: RunnableConfig
) -> StateSchema:
messages = _get_state_value(state, "messages")
structured_response_schema = response_format
if isinstance(response_format, tuple):
system_prompt, structured_response_schema = response_format
messages = [SystemMessage(content=system_prompt)] + list(messages)
model_with_structured_output = _get_model(model).with_structured_output(
cast(StructuredResponseSchema, structured_response_schema)
)
print("messages:", messages)
response = await model_with_structured_output.ainvoke(messages, config)
return {"structured_response": response}
if not tool_calling_enabled:
# Define a new graph
workflow = StateGraph(state_schema, config_schema=config_schema)
workflow.add_node(
"agent",
RunnableCallable(call_model, acall_model),
input=input_schema,
)
if pre_model_hook is not None:
workflow.add_node("pre_model_hook", pre_model_hook)
workflow.add_edge("pre_model_hook", "agent")
entrypoint = "pre_model_hook"
else:
entrypoint = "agent"
workflow.set_entry_point(entrypoint)
if post_model_hook is not None:
workflow.add_node("post_model_hook", post_model_hook)
workflow.add_edge("agent", "post_model_hook")
if response_format is not None:
workflow.add_node(
"generate_structured_response",
RunnableCallable(
generate_structured_response, agenerate_structured_response
),
)
if post_model_hook is not None:
workflow.add_edge("post_model_hook", "generate_structured_response")
else:
workflow.add_edge("agent", "generate_structured_response")
return workflow.compile(
checkpointer=checkpointer,
store=store,
interrupt_before=interrupt_before,
interrupt_after=interrupt_after,
debug=debug,
name=name,
)
# Define the function that determines whether to continue or not
def should_continue(state: StateSchema) -> Union[str, list[Send]]:
messages = _get_state_value(state, "messages")
last_message = messages[-1]
# If there is no function call, then we finish
if not isinstance(last_message, AIMessage) or not last_message.tool_calls:
if post_model_hook is not None:
return "post_model_hook"
elif response_format is not None:
return "generate_structured_response"
else:
return END
# Otherwise if there is, we continue
else:
if version == "v1":
return "tools"
elif version == "v2":
if post_model_hook is not None:
return "post_model_hook"
tool_calls = [
tool_node.inject_tool_args(call, state, store) # type: ignore[arg-type]
for call in last_message.tool_calls
]
return [Send("tools", [tool_call]) for tool_call in tool_calls]
# Define a new graph
workflow = StateGraph(state_schema or AgentState, config_schema=config_schema)
# Define the two nodes we will cycle between
workflow.add_node(
"agent", RunnableCallable(call_model, acall_model), input=input_schema
)
workflow.add_node("tools", tool_node)
# Optionally add a pre-model hook node that will be called
# every time before the "agent" (LLM-calling node)
if pre_model_hook is not None:
workflow.add_node("pre_model_hook", pre_model_hook)
workflow.add_edge("pre_model_hook", "agent")
entrypoint = "pre_model_hook"
else:
entrypoint = "agent"
# Set the entrypoint as `agent`
# This means that this node is the first one called
workflow.set_entry_point(entrypoint)
agent_paths = []
post_model_hook_paths = [entrypoint, "tools"]
# Add a post model hook node if post_model_hook is provided
if post_model_hook is not None:
workflow.add_node("post_model_hook", post_model_hook)
agent_paths.append("post_model_hook")
workflow.add_edge("agent", "post_model_hook")
else:
agent_paths.append("tools")
# Add a structured output node if response_format is provided
if response_format is not None:
workflow.add_node(
"generate_structured_response",
RunnableCallable(
generate_structured_response, agenerate_structured_response
),
)
if post_model_hook is not None:
post_model_hook_paths.append("generate_structured_response")
else:
agent_paths.append("generate_structured_response")
else:
if post_model_hook is not None:
post_model_hook_paths.append(END)
else:
agent_paths.append(END)
if post_model_hook is not None:
def post_model_hook_router(state: StateSchema) -> Union[str, list[Send]]:
"""Route to the next node after post_model_hook.
Routes to one of:
* "tools": if there are pending tool calls without a corresponding message.
* "generate_structured_response": if no pending tool calls exist and response_format is specified.
* END: if no pending tool calls exist and no response_format is specified.
"""
messages = _get_state_value(state, "messages")
tool_messages = [
m.tool_call_id for m in messages if isinstance(m, ToolMessage)
]
last_ai_message = next(
m for m in reversed(messages) if isinstance(m, AIMessage)
)
pending_tool_calls = [
c for c in last_ai_message.tool_calls if c["id"] not in tool_messages
]
if pending_tool_calls:
pending_tool_calls = [
tool_node.inject_tool_args(call, state, store) # type: ignore[arg-type]
for call in pending_tool_calls
]
return [Send("tools", [tool_call]) for tool_call in pending_tool_calls]
elif isinstance(messages[-1], ToolMessage):
return entrypoint
elif response_format is not None:
return "generate_structured_response"
else:
return END
workflow.add_conditional_edges(
"post_model_hook",
post_model_hook_router, # type: ignore[arg-type]
path_map=post_model_hook_paths,
)
workflow.add_conditional_edges(
"agent",
should_continue, # type: ignore[arg-type]
path_map=agent_paths,
)
def route_tool_responses(state: StateSchema) -> str:
for m in reversed(_get_state_value(state, "messages")):
if not isinstance(m, ToolMessage):
break
if m.name in should_return_direct:
return END
# handle a case of parallel tool calls where
# the tool w/ `return_direct` was executed in a different `Send`
if isinstance(m, AIMessage) and m.tool_calls:
if any(call["name"] in should_return_direct for call in m.tool_calls):
return END
return entrypoint
if should_return_direct:
workflow.add_conditional_edges(
"tools", route_tool_responses, path_map=[entrypoint, END]
)
else:
workflow.add_edge("tools", entrypoint)
# Finally, we compile it!
# This compiles it into a LangChain Runnable,
# meaning you can use it as you would any other runnable
return workflow.compile(
checkpointer=checkpointer,
store=store,
interrupt_before=interrupt_before,
interrupt_after=interrupt_after,
debug=debug,
name=name,
)
# Keep for backwards compatibility
create_tool_calling_executor = create_react_agent
__all__ = [
"create_react_agent",
"create_tool_calling_executor",
"AgentState",
"AgentStatePydantic",
"AgentStateWithStructuredResponse",
"AgentStateWithStructuredResponsePydantic",
]