深度学习模型在C++平台的部署

一、概述

深度学习模型能够在各种生产场景中发挥重要的作用,而深度学习模型往往在Python环境下完成训练,因而训练好的模型如何在生产环境下实现稳定可靠的部署,便是一个重要内容。C++开发平台广泛存在于各种复杂的生产环境,随着业务效能需求的不断提高,充分运用深度学习技术的优势显得尤为重要。本文介绍如何实现将深度学习模型部署在C++平台上。

二、步骤

s1. Python环境中安装深度学习框架(如PyTorch、TensorFlow等);

s2. P ython环境中设计并训练深度学习模型;

s3. 将训练好的模型保存为.onnx格式的模型文件;

s4. C++环境中安装Microsoft.ML.OnnxRuntime程序包;

(Visual Studio 2022中可通过项目->管理NuGet程序包完成快捷安装)

s5. C++环境中加载模型文件,完成功能开发。

三、示例

在Python环境下设计并训练一个关于手写数字识别的卷积神经网络(CNN)模型,将模型导出为ONNX格式的文件,然后在C++环境下完成对模型的部署和推理。

1. Python训练和导出

python 复制代码
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.functional import F

# 定义简单的CNN模型
class SimpleCNN(nn.Module):
    def __init__(self):
        super(SimpleCNN, self).__init__()
        self.conv1 = nn.Conv2d(1, 16, kernel_size=3, stride=1, padding=1)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1)
        self.fc1 = nn.Linear(32 * 7 * 7, 128)
        self.fc2 = nn.Linear(128, 10)

    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = x.view(-1, 32 * 7 * 7)
        x = F.relu(self.fc1(x))
        x = self.fc2(x)
        return x

# 数据预处理
transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.1307,), (0.3081,))
])

# 加载训练数据
train_dataset = datasets.MNIST('data', train=True, download=True, transform=transform)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True)

# 初始化模型、损失函数和优化器
model = SimpleCNN()
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)

# 训练模型
def train(model, train_loader, criterion, optimizer, epochs=5):
    model.train()
    for epoch in range(epochs):
        running_loss = 0.0
        for batch_idx, (data, target) in enumerate(train_loader):
            optimizer.zero_grad()
            output = model(data)
            loss = criterion(output, target)
            loss.backward()
            optimizer.step()
            running_loss += loss.item()
        print(f'Epoch {epoch+1}, Loss: {running_loss/len(train_loader)}')

# 训练模型
train(model, train_loader, criterion, optimizer)

# 导出为ONNX格式
dummy_input = torch.randn(1, 1, 28, 28)
torch.onnx.export(
    model,
    dummy_input,
    "mnist_model.onnx",
    export_params=True,
    opset_version=11,
    do_constant_folding=True,
    input_names=['input'],
    output_names=['output'],
    dynamic_axes={'input': {0: 'batch_size'}, 'output': {0: 'batch_size'}}
)

print("模型已成功导出为mnist_model.onnx")

2. C++ 部署和推理

cpp 复制代码
#include <iostream>
#include <vector>
#include <opencv2/opencv.hpp>
#include <onnxruntime_cxx_api.h>

int main() {
    // 初始化环境
    Ort::Env env(ORT_LOGGING_LEVEL_WARNING, "MNIST");
    Ort::SessionOptions session_options;
    session_options.SetIntraOpNumThreads(1);
    session_options.SetGraphOptimizationLevel(GraphOptimizationLevel::ORT_ENABLE_ALL);


    // 加载模型
    std::wstring model_path = L"mnist_model.onnx";
    Ort::Session session(env, model_path.c_str(), session_options);


    // 准备输入
    std::vector<int64_t> input_shape = { 1, 1, 28, 28 };
    size_t input_tensor_size = 28 * 28;
    std::vector<float> input_tensor_values(input_tensor_size);
    

    // 读取测试图片
    cv::Mat test_image = cv::imread("test.jpg", cv::IMREAD_GRAYSCALE);         

    // 将Mat数据复制到vector中
    for (int i = 0; i < test_image.rows; ++i) {
        for (int j = 0; j < test_image.cols; ++j) {
            input_tensor_values[i * test_image.cols + j] = static_cast<float>(test_image.at<uchar>(i, j)); // 注意:uchar是unsigned char的缩写,表示无符号字符,通常用于存储灰度值
        }
    }
 

    // 创建输入张量
    auto memory_info = Ort::MemoryInfo::CreateCpu(OrtArenaAllocator, OrtMemTypeDefault);
    Ort::Value input_tensor = Ort::Value::CreateTensor<float>(
        memory_info, input_tensor_values.data(), input_tensor_size, input_shape.data(), 4);

    // 设置输入输出名称
    std::vector<const char*> input_names;
    std::vector<const char*> output_names;
    input_names.push_back(session.GetInputNameAllocated(0, Ort::AllocatorWithDefaultOptions()).get());
    output_names.push_back(session.GetOutputNameAllocated(0, Ort::AllocatorWithDefaultOptions()).get());

    // 运行推理
    auto output_tensors = session.Run(
        Ort::RunOptions{ nullptr },
        input_names.data(),
        &input_tensor,
        1,
        output_names.data(),
        1);

    // 获取输出结果
    float* output = output_tensors[0].GetTensorMutableData<float>();
    std::vector<float> results(output, output + 10);

    // 找到预测的数字
    int predicted_digit = 0;
    float max_probability = results[0];
    for (int i = 1; i < 10; i++) {
        if (results[i] > max_probability) {
            max_probability = results[i];
            predicted_digit = i;
        }
    }

    std::cout << "预测结果: " << predicted_digit << std::endl;
    std::cout << "置信度分布:" << std::endl;
    for (int i = 0; i < 10; i++) {
        std::cout << "数字 " << i << ": " << results[i] << std::endl;
    }

    return 0;
}

测试图片:

程序运行:

End.

相关推荐
景彡先生3 小时前
C++并行计算:OpenMP与MPI全解析
开发语言·c++
pay4fun6 小时前
2048-控制台版本
c++·学习
hjjdebug7 小时前
ffplay6 播放器关键技术点分析 1/2
c++·ffmpeg·音视频
Azxcc08 小时前
C++异步编程入门
开发语言·c++
Danceful_YJ8 小时前
4.权重衰减(weight decay)
python·深度学习·机器学习
吐泡泡_8 小时前
C++(STL源码刨析/vector)
c++
你的冰西瓜8 小时前
C++排序算法全解析(加强版)
c++·算法·排序算法
特立独行的猫a9 小时前
11款常用C++在线编译与运行平台推荐与对比
java·开发语言·c++
笑鸿的学习笔记9 小时前
qt-C++笔记之setCentralWidget的使用
c++·笔记·qt