图像处理中的霍夫变换:直线检测与圆检测

目录

一、什么是霍夫变换?

[1. 霍夫直线变换](#1. 霍夫直线变换)

[2. 霍夫圆变换](#2. 霍夫圆变换)

二、霍夫直线变换的实现

[1. 标准霍夫直线变换](#1. 标准霍夫直线变换)

代码示例

[2. 统计概率霍夫直线变换](#2. 统计概率霍夫直线变换)

代码示例

三、霍夫圆变换的实现

代码示例

四、总结


在图像处理中,霍夫变换是一种强大的工具,用于从复杂的图像中提取简单的几何形状,如直线和圆。本文将详细介绍霍夫变换的原理和实现方法,并通过代码示例展示如何使用 OpenCV 进行直线检测和圆检测。

一、什么是霍夫变换?

霍夫变换是一种用于检测图像中特定几何形状(如直线、圆等)的方法。它的核心思想是将图像从笛卡尔坐标系转换到参数空间(霍夫空间),通过累加器投票机制来检测形状。

1. 霍夫直线变换

对于一条直线,可以用方程 y=kx+b 表示。在霍夫空间中,直线被表示为一个点 (ρ,θ),其中 ρ 是直线到原点的距离,θ 是直线与 x 轴的夹角。

2. 霍夫圆变换

对于一个圆,可以用方程 (x−x0​)2+(y−y0​)2=r2 表示。在霍夫空间中,圆被表示为一个点 (x0​,y0​,r),其中 (x0​,y0​) 是圆心坐标,r 是半径。

二、霍夫直线变换的实现

1. 标准霍夫直线变换

标准霍夫直线变换会检测图像中的所有直线,并返回它们的参数 (ρ,θ)。

代码示例
python 复制代码
import cv2
import numpy as np

def test_hough_lines():
    # 读取图像
    img = cv2.imread("./opencv_work/src/huofu.png")
    img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    img_edge = cv2.Canny(img_gray, 40, 120)  # 使用 Canny 边缘检测

    # 使用霍夫变换检测直线
    lines = cv2.HoughLines(img_edge, 0.8, 0.0178, 90)

    # 绘制检测到的直线
    if lines is not None:
        for el in lines:
            rho, theta = el[0]
            a = np.cos(theta)
            b = np.sin(theta)
            x0 = a * rho
            y0 = b * rho
            x1 = int(x0 + b * 1000)
            y1 = int(y0 - a * 1000)
            x2 = int(x0 - b * 1000)
            y2 = int(y0 + a * 1000)
            cv2.line(img, (x1, y1), (x2, y2), (0, 0, 255), 1)

    # 显示结果
    cv2.imshow("img", img)
    cv2.imshow("img_edge", img_edge)
    cv2.waitKey(0)
    cv2.destroyAllWindows()

if __name__ == '__main__':
    test_hough_lines()

2. 统计概率霍夫直线变换

统计概率霍夫直线变换是一种改进的霍夫变换,它不仅检测直线,还返回直线的端点坐标。

代码示例
python 复制代码
import cv2
import numpy as np

def test_probabilistic_hough_lines():
    # 读取图像
    img = cv2.imread("./opencv_work/src/huofu.png")
    img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    img_edge = cv2.Canny(img_gray, 30, 70)  # 使用 Canny 边缘检测

    # 使用统计概率霍夫变换检测直线
    lines = cv2.HoughLinesP(img_edge, 1, 0.01745, 90, minLineLength=50, maxLineGap=10)

    # 绘制检测到的直线
    if lines is not None:
        for line in lines:
            x1, y1, x2, y2 = line[0]
            cv2.line(img, (x1, y1), (x2, y2), (0, 0, 255), 1, lineType=cv2.LINE_AA)

    # 显示结果
    cv2.imshow("img", img)
    cv2.imshow("img_edge", img_edge)
    cv2.waitKey(0)
    cv2.destroyAllWindows()

if __name__ == '__main__':
    test_probabilistic_hough_lines()

三、霍夫圆变换的实现

霍夫圆变换用于检测图像中的圆形。它通过累加器投票机制来检测圆心和半径。

代码示例
python 复制代码
import cv2
import numpy as np

def test_hough_circles():
    # 读取图像
    img = cv2.imread("./opencv_work/src/huofu.png")
    img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    img_edge = cv2.Canny(img_gray, 30, 70)  # 使用 Canny 边缘检测

    # 使用霍夫圆变换检测圆
    circles = cv2.HoughCircles(img_edge, cv2.HOUGH_GRADIENT, 1, 20, param1=50, param2=30, minRadius=0, maxRadius=0)

    # 绘制检测到的圆
    if circles is not None:
        circles = np.int_(np.around(circles))
        for i in circles[0, :]:
            cv2.circle(img, (i[0], i[1]), i[2], (0, 255, 0), 2)  # 画出外圆
            cv2.circle(img, (i[0], i[1]), 2, (0, 0, 255), 3)  # 画出圆心

    # 显示结果
    cv2.imshow("img", img)
    cv2.imshow("img_edge", img_edge)
    cv2.waitKey(0)
    cv2.destroyAllWindows()

if __name__ == '__main__':
    test_hough_circles()

四、总结

霍夫变换是一种非常强大的图像处理技术,可以用于检测图像中的直线和圆等几何形状。通过本文的介绍和代码示例,相信你已经对霍夫变换有了更深入的理解。

  • 霍夫直线变换:适用于检测图像中的直线。

  • 统计概率霍夫直线变换:适用于检测图像中的直线,并返回直线的端点坐标。

  • 霍夫圆变换:适用于检测图像中的圆形。

相关推荐
会飞的老朱3 小时前
医药集团数智化转型,智能综合管理平台激活集团管理新效能
大数据·人工智能·oa协同办公
聆风吟º4 小时前
CANN runtime 实战指南:异构计算场景中运行时组件的部署、调优与扩展技巧
人工智能·神经网络·cann·异构计算
Codebee6 小时前
能力中心 (Agent SkillCenter):开启AI技能管理新时代
人工智能
聆风吟º7 小时前
CANN runtime 全链路拆解:AI 异构计算运行时的任务管理与功能适配技术路径
人工智能·深度学习·神经网络·cann
uesowys7 小时前
Apache Spark算法开发指导-One-vs-Rest classifier
人工智能·算法·spark
AI_56787 小时前
AWS EC2新手入门:6步带你从零启动实例
大数据·数据库·人工智能·机器学习·aws
User_芊芊君子7 小时前
CANN大模型推理加速引擎ascend-transformer-boost深度解析:毫秒级响应的Transformer优化方案
人工智能·深度学习·transformer
智驱力人工智能8 小时前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算
qq_160144878 小时前
亲测!2026年零基础学AI的入门干货,新手照做就能上手
人工智能
Howie Zphile8 小时前
全面预算管理难以落地的核心真相:“完美模型幻觉”的认知误区
人工智能·全面预算