模型介绍
图像生成模型(image / vision):用于生成图片或处理视觉任务,如 stable-diffusion、llava 等。
语音识别/合成模型(audio / speech):用于语音转文本或文本转语音。
代码生成模型(code):专门用于代码补全、生成和理解,如 code-llama。
指令/任务特化模型(instruct):针对特定任务优化的模型,如 summarization、translation、classification 等。
不同模型类型适用于不同的 AI 场景,具体支持哪些模型可参考 Ollama 官方文档或模型库。
arduino
ollama pull llama3
ollama pull minicpm-v
ollama pull llama3
ollama pull minicpm-v
ollama pull deepseek
ollama pull deepseek-r1:latest
ollama pull nomic-embed-text:latest
基本概念
关键词介绍
prompt介绍

Prompt 最初是 NLP(自然语言处理)研究者为下游任务设计出来的一种任务专属的输入模板,类似于一种任务(例如:分类,聚类等)会对应一种 Prompt。在 ChatGPT 推出并获得大量应用之后,Prompt 开始被推广为给大模型的所有输入。即,我们每一次访问大模型的输入为一个 Prompt,而大模型给我们的返回结果则被称为 Completion。
后续我们都将会使用 Prompt 替代给 LLM 的输入,使用 Completion 替代 LLM 的输出。同时,我们会结合具体案例,介绍如何设计 Prompt 能够充分发挥 LLM 的能力。
temperature介绍

LLM 生成是具有随机性的,在模型的顶层通过选取不同预测概率的预测结果来生成最后的结果。我们一般可以通过控制 temperature 参数来控制 LLM 生成结果的随机性与创造性。
Temperature 一般取值在 0~1 之间,当取值较低接近 0 时,预测的随机性会较低,产生更保守、可预测的文本,不太可能生成意想不到或不寻常的词。当取值较高接近 1 时,预测的随机性会较高,所有词被选择的可能性更大,会产生更有创意、多样化的文本,更有可能生成不寻常或意想不到的词。
scss
对于不同的问题与应用场景,我们可能需要设置不同的 temperature。
例如,在本教程搭建的个人知识库助手项目中,我们一般将 temperature 设置为 0,从而保证助手对知识库内容的稳定使用,规避错误内容、模型幻觉;在产品智能客服、科研论文写作等场景中,我们同样更需要稳定性而不是创造性;但在个性化 AI、创意营销文案生成等场景中,我们就更需要创意性,从而更倾向于将 temperature 设置为较高的值。
top_p (float),用温度取样的另一种方法,称为核取样。取值范围是:(0.0, 1.0) 开区间,不能等于 0 或 1,默认值为 0.7。模型考虑具有 top_p 概率质量 tokens 的结果。例如:0.1 意味着模型解码器只考虑从前 10% 的概率的候选集中取 tokens
建议您根据应用场景调整 top_p 或 temperature 参数,但不要同时调整两个参数
- 建议您根据应用场景调整 top_p 或temperature参数,但不要同时调整两个参数

system Prompt介绍
System Prompt 是随着 ChatGPT API 开放并逐步得到大量使用的一个新兴概念,事实上,它并不在大模型本身训练中得到体现,而是大模型服务方为提升用户体验所设置的一种策略。
具体来说,在使用 ChatGPT API 时,你可以设置两种 Prompt:一种是 System Prompt,该种 Prompt 内容会在整个会话过程中持久地影响模型的回复,且相比于普通 Prompt 具有更高的重要性;另一种是 User Prompt,这更偏向于我们平时提到的 Prompt,即需要模型做出回复的输入。
sql
我们一般设置 System Prompt 来对模型进行一些初始化设定,例如,我们可以在 System Prompt 中给模型设定我们希望它具备的人设如一个个人知识库助手等。System Prompt 一般在一个会话中仅有一个。在通过 System Prompt 设定好模型的人设或是初始设置后,我们可以通过 User Prompt 给出模型需要遵循的指令。
Prompt Engineering介绍
对于具有较强自然语言理解、生成能力,能够实现多样化任务处理的大语言模型(LLM)来说,一个好的 Prompt 设计极大地决定了其能力的上限与下限。如何去使用 Prompt,以充分发挥 LLM 的性能?首先我们需要知道设计 Prompt 的原则,它们是每一个开发者设计 Prompt 所必须知道的基础概念。本节讨论了设计高效 Prompt 的两个关键原则:编写清晰、具体的指令 和给予模型充足思考时间。掌握这两点,对创建可靠的语言模型交互尤为重要。
在编写 Prompt 时,我们可以使用各种标点符号作为"分隔符",将不同的文本部分区分开来。分隔符就像是 Prompt 中的墙,将不同的指令、上下文、输入隔开,避免意外的混淆。你可以选择用 ```,""",< >,,: 等做分隔符,只要能明确起到隔断作用即可。
使用分隔符
⚠️使用分隔符尤其需要注意的是要防止提示词注入(Prompt Rejection)
。什么是提示词注入?
就是用户输入的文本可能包含与你的预设 Prompt 相冲突的内容,如果不加分隔,这些输入就可能"注入"并操纵语言模型,轻则导致模型产生毫无关联的不正确的输出,严重的话可能造成应用的安全风险。
寻求结构化的输出
有时候我们需要语言模型给我们一些结构化的输出,而不仅仅是连续的文本。什么是结构化输出呢?就是按照某种格式组织的内容,例如 JSON、HTML 等。这种输出非常适合在代码中进一步解析和处理。
要求模型检查是否满足条件
如果任务包含不一定能满足的假设(条件),我们可以告诉模型先检查这些假设,如果不满足,则会指 出并停止执行后续的完整流程。您还可以考虑可能出现的边缘情况及模型的应对,以避免意外的结果或 错误发生。
提供少量示例
"Few-shot" prompting(少样本提示),即在要求模型执行实际任务之前,给模型提供一两个参考样例,让模型了解我们的要求和期望的输出样式。
利用少样本样例,我们可以轻松"预热"语言模型,让它为新的任务做好准备。这是一个让模型快速上手新 任务的有效策略。
给模型时间去思考
在设计 Prompt 时,给予语言模型充足的推理时间非常重要。语言模型与人类一样,需要时间来思考并解决复杂问题。如果让语言模型匆忙给出结论,其结果很可能不准确。例如,若要语言模型推断一本书的主题,仅提供简单的书名和一句简介是不足够的。这就像让一个人在极短时间内解决困难的数学题,错误在所难免。
相反,我们应通过 Prompt 引导语言模型进行深入思考。可以要求其先列出对问题的各种看法,说明推理依据,然后再得出最终结论。在 Prompt 中添加逐步推理的要求,能让语言模型投入更多时间逻辑思维,输出结果也将更可靠准确。
指定完成任务所需的步骤
指导模型在下结论之前找出一个自己的解法
⚠️ 在开发与应用语言模型时,需要注意它们可能生成虚假信息的风险。尽管模型经过大规模预训练,掌握 了丰富知识,但它实际上并没有完全记住所见的信息,难以准确判断自己的知识边界,可能做出错误推断。若让语言模型描述一个不存在的产品,它可能会自行构造出似是而非的细节。这被称为"幻觉" (Hallucination)
,是语言模型的一大缺陷。
语言模型的幻觉问题事关应用的可靠性与安全性。开发者有必要认识到这一缺陷,并采取 Prompt优化、外部知识等措施予以缓解,以开发出更加可信赖的语言模型应用。这也将是未来语言模型进化的重要方向之一。
向量及向量知识库
向量介绍
在机器学习和自然语言处理(NLP)中,词向量(word embedding)是一种以单词为单位将每个单词转化为实数向量的技术。这些实数向量可以被计算机更好地理解和处理。词向量背后的主要想理念是相似或相关的对象在向量空间中的距离应该很近。
词向量实际上是将单词转化为固定的静态的向量,虽然可以在一定程度上捕捉并表达文本中的语义信息,但忽略了单词在不同语境中的意思会受到影响这一现实。因此在RAG应用中使用的向量技术一般为通用文本向量(Universal text embedding),该技术可以对一定范围内任意长度的文本进行向量化,与词向量不同的是向量化的单位不再是单词而是输入的文本,输出的向量会捕捉更多的语义信息。
在RAG(Retrieval Augmented Generation,检索增强生成)方面向量的优势主要有两点:
- 向量比文字更适合检索。当我们在数据库检索时,如果数据库存储的是文字,主要通过检索关键词(词法搜索)等方法找到相对匹配的数据,匹配的程度取决于数据库中的文档中是否含有查询句中的关键词;而向量中包含了原文本的语义信息,可以通过计算问题与数据库中数据的点积、余弦距离、欧几里得距离等指标,直接获取问题与数据在语义层面上的相似度;
- 向量比其它媒介的综合信息能力更强,当传统数据库存储文字、声音、图像、视频等多种媒介时,很难去将上述多种媒介构建起关联与跨模态的查询方法;但是向量却可以通过多种向量模型将多种数据映射成统一的向量形式。
在搭建 RAG 系统时,我们往往可以通过使用向量模型来构建向量,我们可以选择:
- 使用各个公司的 Embedding API;
- 在本地使用向量模型将数据构建为向量。
向量数据库介绍
向量数据库是用于高效计算和管理大量向量数据的解决方案。向量数据库是一种专门用于存储和检索向量数据(embedding)的数据库系统。它与传统的基于关系模型的数据库不同,它主要关注的是向量数据的特性和相似性。
在向量数据库中,数据被表示为向量形式,每个向量代表一个数据项。这些向量可以是数字、文本、图像或其他类型的数据。向量数据库使用高效的索引和查询算法来加速向量数据的存储和检索过程。
向量数据库中的数据以向量作为基本单位,对向量进行存储、处理及检索。向量数据库通过计算与目标向量的余弦距离、点积等获取与目标向量的相似度。当处理大量甚至海量的向量数据时,向量数据库索引和查询算法的效率明显高于传统数据库。
使用Embedding API
数据处理
为构建我们的本地知识库,我们需要对以多种类型存储的本地文档进行处理,读取本地文档并通过前文描述的 Embedding 方法将本地文档的内容转化为词向量来构建向量数据库。
数据读取
例如:对于PDF 文档,我们可以使用 LangChain 的 PyMuPDFLoader 来读取知识库的 PDF 文件。PyMuPDFLoader 是 PDF 解析器中速度最快的一种,结果会包含 PDF 及其页面的详细元数据,并且每页返回一个文档。
数据清洗
我们期望知识库的数据尽量是有序的、优质的、精简的,因此我们要删除低质量的、甚至影响理解的文本数据。
例如:可以看到上文中读取的pdf文件不仅将一句话按照原文的分行添加了换行符\n
,也在原本两个符号中间插入了\n
,我们可以使用正则表达式匹配并删除掉\n
。
文档分割
由于单个文档的长度往往会超过模型支持的上下文,导致检索得到的知识太长超出模型的处理能力,因此,在构建向量知识库的过程中,我们往往需要对文档进行分割,将单个文档按长度或者按固定的规则分割成若干个 chunk,然后将每个 chunk 转化为词向量,存储到向量数据库中。
在检索时,我们会以 chunk 作为检索的元单位,也就是每一次检索到 k 个 chunk 作为模型可以参考来回答用户问题的知识,这个 k 是我们可以自由设定的。
例如:Langchain 中文本分割器都根据chunk_size
(块大小)和chunk_overlap
(块与块之间的重叠大小)进行分割。
注:如何对文档进行分割,其实是数据处理中最核心的一步,其往往决定了检索系统的下限。但是,如何选择分割方式,往往具有很强的业务相关性------针对不同的业务、不同的源数据,往往需要设定个性化的文档分割方式。
向量检索
例如:Chroma的相似度搜索使用的是余弦距离,即:

其中ai、bi分别是向量AA、BB的分量。
当你需要数据库返回严谨的按余弦相似度排序的结果时可以使用similarity_search
函数。
如果只考虑检索出内容的相关性会导致内容过于单一,可能丢失重要信息。
最大边际相关性 (MMR, Maximum marginal relevance
) 可以帮助我们在保持相关性的同时,增加内容的丰富度。
核心思想是在已经选择了一个相关性高的文档之后,再选择一个与已选文档相关性较低但是信息丰富的文档。这样可以在保持相关性的同时,增加内容的多样性,避免过于单一的结果。