ICCV2025 特征点检测 图像匹配 RIPE

目测对刚性物体效果比较好

代码:https://github.com/fraunhoferhhi/RIPE

论文:https://arxiv.org/abs/2507.04839

python 复制代码
import cv2
import kornia.feature as KF
import kornia.geometry as KG
import matplotlib.pyplot as plt
import numpy as np
import torch
from torchvision.io import decode_image

from ripe import vgg_hyper
from ripe.utils.utils import cv2_matches_from_kornia, resize_image, to_cv_kpts

dev = torch.device("cuda" if torch.cuda.is_available() else "cpu")

model = vgg_hyper().to(dev)
model.eval()

image1 = resize_image(decode_image("assets/all_souls_000013.jpg").float().to(dev) / 255.0)
image2 = resize_image(decode_image("assets/all_souls_000055.jpg").float().to(dev) / 255.0)

kpts_1, desc_1, score_1 = model.detectAndCompute(image1, threshold=0.5, top_k=2048)
kpts_2, desc_2, score_2 = model.detectAndCompute(image2, threshold=0.5, top_k=2048)

matcher = KF.DescriptorMatcher("mnn")  # threshold is not used with mnn
match_dists, match_idxs = matcher(desc_1, desc_2)

matched_pts_1 = kpts_1[match_idxs[:, 0]]
matched_pts_2 = kpts_2[match_idxs[:, 1]]

H, mask = KG.ransac.RANSAC(model_type="fundamental", inl_th=1.0)(matched_pts_1, matched_pts_2)
matchesMask = mask.int().ravel().tolist()

result_ransac = cv2.drawMatches(
    (image1.cpu().permute(1, 2, 0).numpy() * 255.0).astype(np.uint8),
    to_cv_kpts(kpts_1, score_1),
    (image2.cpu().permute(1, 2, 0).numpy() * 255.0).astype(np.uint8),
    to_cv_kpts(kpts_2, score_2),
    cv2_matches_from_kornia(match_dists, match_idxs),
    None,
    matchColor=(0, 255, 0),
    matchesMask=matchesMask,
    # matchesMask=None, # without RANSAC filtering
    singlePointColor=(0, 0, 255),
    flags=cv2.DrawMatchesFlags_DEFAULT,
)

plt.imshow(result_ransac)
plt.axis("off")
plt.tight_layout()

plt.show()
相关推荐
lumi.16 小时前
Vue + Element Plus 实现AI文档解析与问答功能(含详细注释+核心逻辑解析)
前端·javascript·vue.js·人工智能
m0_6501082416 小时前
InstructBLIP:面向通用视觉语言模型的指令微调技术解析
论文阅读·人工智能·q-former·指令微调的视觉语言大模型·零样本跨任务泛化·通用视觉语言模型
金融小师妹17 小时前
基于NLP语义解析的联储政策信号:强化学习框架下的12月降息概率回升动态建模
大数据·人工智能·深度学习·1024程序员节
AKAMAI19 小时前
提升 EdgeWorker 可观测性:使用 DataStream 设置日志功能
人工智能·云计算
银空飞羽19 小时前
让Trae CN SOLO自主发挥,看看能做出一个什么样的项目
前端·人工智能·trae
cg501720 小时前
基于 Bert 基本模型进行 Fine-tuned
人工智能·深度学习·bert
Dev7z20 小时前
基于Matlab图像处理的EAN条码自动识别系统设计与实现
图像处理·人工智能
Curvatureflight20 小时前
GPT-4o Realtime 之后:全双工语音大模型如何改变下一代人机交互?
人工智能·语言模型·架构·人机交互
6***x54520 小时前
C在机器学习中的ML.NET应用
人工智能·机器学习
陈天伟教授20 小时前
基于学习的人工智能(1)机器学习
人工智能·学习