ICCV2025 特征点检测 图像匹配 RIPE

目测对刚性物体效果比较好

代码:https://github.com/fraunhoferhhi/RIPE

论文:https://arxiv.org/abs/2507.04839

python 复制代码
import cv2
import kornia.feature as KF
import kornia.geometry as KG
import matplotlib.pyplot as plt
import numpy as np
import torch
from torchvision.io import decode_image

from ripe import vgg_hyper
from ripe.utils.utils import cv2_matches_from_kornia, resize_image, to_cv_kpts

dev = torch.device("cuda" if torch.cuda.is_available() else "cpu")

model = vgg_hyper().to(dev)
model.eval()

image1 = resize_image(decode_image("assets/all_souls_000013.jpg").float().to(dev) / 255.0)
image2 = resize_image(decode_image("assets/all_souls_000055.jpg").float().to(dev) / 255.0)

kpts_1, desc_1, score_1 = model.detectAndCompute(image1, threshold=0.5, top_k=2048)
kpts_2, desc_2, score_2 = model.detectAndCompute(image2, threshold=0.5, top_k=2048)

matcher = KF.DescriptorMatcher("mnn")  # threshold is not used with mnn
match_dists, match_idxs = matcher(desc_1, desc_2)

matched_pts_1 = kpts_1[match_idxs[:, 0]]
matched_pts_2 = kpts_2[match_idxs[:, 1]]

H, mask = KG.ransac.RANSAC(model_type="fundamental", inl_th=1.0)(matched_pts_1, matched_pts_2)
matchesMask = mask.int().ravel().tolist()

result_ransac = cv2.drawMatches(
    (image1.cpu().permute(1, 2, 0).numpy() * 255.0).astype(np.uint8),
    to_cv_kpts(kpts_1, score_1),
    (image2.cpu().permute(1, 2, 0).numpy() * 255.0).astype(np.uint8),
    to_cv_kpts(kpts_2, score_2),
    cv2_matches_from_kornia(match_dists, match_idxs),
    None,
    matchColor=(0, 255, 0),
    matchesMask=matchesMask,
    # matchesMask=None, # without RANSAC filtering
    singlePointColor=(0, 0, 255),
    flags=cv2.DrawMatchesFlags_DEFAULT,
)

plt.imshow(result_ransac)
plt.axis("off")
plt.tight_layout()

plt.show()
相关推荐
自不量力的A同学3 分钟前
Solon AI v3.9 正式发布:全能 Skill 爆发
java·网络·人工智能
一枕眠秋雨>o<9 分钟前
从抽象到具象:TBE如何重构AI算子的编译哲学
人工智能
xiaobaibai15310 分钟前
决策引擎深度拆解:AdAgent 用 CoT+RL 实现营销自主化决策
大数据·人工智能
island131411 分钟前
CANN ops-nn 算子库深度解析:神经网络核心计算的硬件映射、Tiling 策略与算子融合机制
人工智能·深度学习·神经网络
冬奇Lab12 分钟前
一天一个开源项目(第14篇):CC Workflow Studio - 可视化AI工作流编辑器,让AI自动化更简单
人工智能·开源·编辑器
是小蟹呀^14 分钟前
从稀疏到自适应:人脸识别中稀疏表示的核心演进
人工智能·分类
云边有个稻草人14 分钟前
CANN ops-nn:筑牢AIGC的神经网络算子算力底座
人工智能·神经网络·aigc·cann
island131414 分钟前
CANN Catlass 算子模板库深度解析:高性能 GEMM 架构、模板元编程与融合算子的显存管理策略
人工智能·神经网络·架构·智能路由器
结局无敌15 分钟前
从算子到生态:cann/ops-nn 如何编织一张高性能AI的协作之网
人工智能
chaser&upper16 分钟前
击穿长文本极限:在 AtomGit 破译 CANN ops-nn 的注意力加速密码
人工智能·深度学习·神经网络