分类预测 | Matlab基于KPCA-ISSA-SVM和ISSA-SVM和SSA-SVM和SVM多模型分类预测对比

分类预测 | Matlab基于KPCA-ISSA-SVM和ISSA-SVM和SSA-SVM和SVM多模型分类预测对比

目录

分类效果



基本介绍

Matlab实现KPCA-ISSA-SVM基于核主成分分析和改进麻雀优化算法优化支持向量机分类预测(可用于故障诊断等方面)MATLAB代码,运行环境matlab2018及以上。

❶含SVM、SSA-SVM、ISSA-SVM、KPCA-ISSA-SVM,四个模型的对比。经过降维后利用改进蜣螂算法优化LSSVM参数为:sig,gamma。

❷改进策略:融合柯西变异和反向学习的改进麻雀算法可提高收敛率,促进算法寻优。

❸可出分类效果图,迭代优化图,混淆矩阵

❹代码中文注释清晰,质量极高

❺赠送数据集,可以直接运行源程序。

功能概述

Matlab基于KPCA-ISSA-SVM和ISSA-SVM和SSA-SVM和SVM多模型分类预测对比

代码主要功能

该代码实现了一个基于核主成分分析(KPCA)降维和麻雀搜索算法(SSA)优化的支持向量机(SVM)分类模型,主要流程包括:

数据预处理与KPCA特征降维

智能算法(SSA)优化SVM超参数

训练优化后的SVM分类器

模型性能评估与可视化分析

算法步骤与技术路线

  1. 数据预处理
    数据导入:从Excel读取数据集(数据集.xlsx)
    归一化:使用mapminmax将输入特征归一化到[0,1]区间
    矩阵转置:适配后续降维操作
  2. KPCA特征降维
    核函数:多项式核('poly',阶数para=2)
    降维维度:保留8维主成分(dim=8)
    贡献率分析:可视化降维后各特征的方差贡献率
  3. 数据集划分
    分层抽样:按类别分层划分训练集(70%)和测试集(30%)
    随机打乱:randperm防止顺序偏差
    多类别支持:自动识别类别数(num_class)
  4. SSA优化SVM参数
    优化目标:最小化分类错误率(getObjValue函数)
    优化参数:SVM的惩罚系数c和核参数g
    参数范围:
    c ∈ [0.01, 1]
    g ∈ [2⁻⁵, 2⁵] ≈ [0.03125, 32]
    SSA设置:
    种群大小:8
    最大迭代次数:30
  5. SVM建模与预测
    核函数:RBF核(-t 2)
    训练:libsvmtrain使用优化后的(c,g)
    预测:对训练集/测试集进行分类预测
  6. 性能评估与可视化
    准确率计算:训练集/测试集分类正确率
    优化曲线:SSA迭代过程中的适应度变化
    预测对比图:真实值 vs 预测值对比
    混淆矩阵:分类细节可视化(需MATLAB 2018+)

创新点

降维与优化结合:KPCA降低特征维度 + SSA优化SVM参数

高效参数搜索:麻雀算法替代传统网格搜索

全流程可视化:贡献率、优化曲线、混淆矩阵一体化分析

程序设计

  • 完整程序和数据私信博主回复Matlab基于KPCA-ISSA-SVM和ISSA-SVM和SSA-SVM和SVM多模型分类预测对比
clike 复制代码
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%%  导入数据
res = xlsread('数据集.xlsx');

%%  参数设置
P_train=res(:,1:end-1)';

%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);

%%  矩阵转置
p_train = p_train';

%%  参数设置
para = 2;        % 核函数参数
dim = 8;        % 降维后维度

%% 重新安排数据
res = [zes';res(:,end)']';
%%  分析数据
num_class = length(unique(res(:, end)));  % 类别数(Excel最后一列放类别)
num_res = size(res, 1);                   % 样本数(每一行,是一个样本)
num_size = 0.7;                           % 训练集占数据集的比例
res = res(randperm(num_res), :);          % 打乱数据集(不打乱数据时,注释该行)
flag_conusion = 1;                        % 标志位为1,打开混淆矩阵(要求2018版本及以上)
outdim = 1;                                  % 最后一列为输出
f_ = size(res, 2) - outdim;                  % 输入特征维度
%%  设置变量存储数据
P_train = []; P_test = [];
T_train = []; T_test = [];

%%  划分数据集
for i = 1 : num_class
    mid_res = res((res(:, end) == i), :);           % 循环取出不同类别的样本
    mid_size = size(mid_res, 1);                    % 得到不同类别样本个数
    mid_tiran = round(num_size * mid_size);         % 得到该类别的训练样本个数

    P_train = [P_train; mid_res(1: mid_tiran, 1: end - 1)];       % 训练集输入
    T_train = [T_train; mid_res(1: mid_tiran, end)];              % 训练集输出

    P_test  = [P_test; mid_res(mid_tiran + 1: end, 1: end - 1)];  % 测试集输入
    T_test  = [T_test; mid_res(mid_tiran + 1: end, end)];         % 测试集输出
end


%%  得到训练集和测试样本个数
M = size(P_train, 1);
N = size(P_test , 1);

%% 数据预处理
% 数据预处理,将训练集和测试集归一化到[0,1]区间
%% 数据归一化
[p_train, ps_input] = mapminmax(P_train',0,1);
p_test = mapminmax('apply',P_test',ps_input);
t_train = T_train;
t_test  = T_test;

参考资料

1\] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502 \[2\] https://blog.csdn.net/kjm13182345320/article/details/128690229

相关推荐
胖哥真不错35 分钟前
基于MATLAB的Lasso回归的数据回归预测方法应用
机器学习·matlab·项目实战·lasso回归
平和男人杨争争6 小时前
机器学习11——支持向量机上
人工智能·机器学习·支持向量机
Yn3126 小时前
LinearSVC 参数配置详解及其应用
人工智能·机器学习·支持向量机
gis收藏家6 小时前
等大小谱聚类
机器学习·支持向量机·聚类
北温凉7 小时前
【论文阅读】基于注意力机制的冥想脑电分类识别研究(2025)
论文阅读·分类·数据挖掘
2zcode20 小时前
基于Matlab多特征融合的可视化指纹识别系统
人工智能·算法·matlab
AI街潜水的八角1 天前
深度学习图像分类数据集—五种电器识别分类
人工智能·深度学习·分类
平和男人杨争争1 天前
机器学习13——支持向量机下
人工智能·机器学习·支持向量机
蓝桉(努力版)1 天前
MATLAB可视化5:华夫图(饼图的平替可以表示种类的分布,附有完整代码详细讲解)(求个关注、点赞和收藏)(对配色不满意可以自己调节配色,附调色教程)
开发语言·数学建模·matlab·信息可视化·matlab可视化