基于Jousselme距离改进D-S证据理论,这通常用于解决高冲突证据下的融合问题。
一、核心MATLAB代码实现
1. Jousselme证据距离计算函数
matlab
function dist = JousselmeDistance(m1, m2, F)
% 计算两个证据体之间的Jousselme距离
% 输入: m1, m2 - 证据向量(对焦元的基本概率分配)
% F - 识别框架的焦元矩阵
% 输出: dist - Jousselme距离
% 获取焦元数量
n = size(F, 1);
% 构建相似性矩阵D
D = zeros(n, n);
for i = 1:n
for j = 1:n
% 计算Jaccard相似系数
intersection = sum(F(i, :) & F(j, :));
union = sum(F(i, :) | F(j, :));
if union == 0
D(i, j) = 0;
else
D(i, j) = intersection / union;
end
end
end
% 计算向量差
diff = m1 - m2;
% 计算Jousselme距离
dist = sqrt(0.5 * diff' * D * diff);
end
2. 证据冲突度与权重计算
matlab
function [weights, conflict_matrix] = CalculateEvidenceWeights(evidences, F)
% 计算各证据的权重(基于Jousselme距离)
% 输入: evidences - 证据矩阵,每列是一个证据
% F - 识别框架
% 输出: weights - 证据权重向量
% conflict_matrix - 冲突矩阵
n_evidences = size(evidences, 2);
conflict_matrix = zeros(n_evidences, n_evidences);
% 计算两两证据间的距离
for i = 1:n_evidences
for j = 1:n_evidences
if i ~= j
conflict_matrix(i, j) = JousselmeDistance(evidences(:, i), ...
evidences(:, j), F);
end
end
end
% 计算每个证据的支持度
support = zeros(1, n_evidences);
for i = 1:n_evidences
% 证据i的支持度 = 与其他证据相似度的平均值
similarities = 1 - conflict_matrix(i, :);
similarities(i) = []; % 移除自身
support(i) = sum(similarities) / (n_evidences - 1);
end
% 将支持度归一化为权重
weights = support / sum(support);
end
3. 改进的D-S证据融合算法
matlab
function [m_fused, conflict] = ImprovedDSFusion(evidences, F, method)
% 改进的D-S证据融合算法
% 输入: evidences - 证据矩阵
% F - 识别框架
% method - 融合方法 ('weighted' 或 'discount')
% 输出: m_fused - 融合后的基本概率分配
% conflict - 冲突因子
[n_foci, n_evidences] = size(evidences);
% 计算证据权重
[weights, conflict_matrix] = CalculateEvidenceWeights(evidences, F);
if strcmp(method, 'weighted')
% 方法1: 加权平均证据融合
m_weighted = zeros(n_foci, 1);
for i = 1:n_evidences
m_weighted = m_weighted + weights(i) * evidences(:, i);
end
% Dempster组合规则(对加权平均证据进行多次融合)
m_fused = m_weighted;
for i = 2:n_evidences
m_fused = DempsterRule(m_fused, m_weighted, F);
end
elseif strcmp(method, 'discount')
% 方法2: 证据折扣后融合
m_discounted = zeros(n_foci, n_evidences);
for i = 1:n_evidences
% 计算证据可信度(基于权重)
credibility = weights(i) * (1 - max(conflict_matrix(i, :)));
m_discounted(:, i) = evidences(:, i) * credibility;
% 剩余概率分配给全集
m_discounted(end, i) = m_discounted(end, i) + (1 - credibility);
end
% 使用Dempster规则逐步融合所有折扣证据
m_fused = m_discounted(:, 1);
for i = 2:n_evidences
m_fused = DempsterRule(m_fused, m_discounted(:, i), F);
end
end
% 计算冲突因子
conflict = mean(conflict_matrix(:));
end
function m_result = DempsterRule(m1, m2, F)
% 经典的Dempster组合规则
n = length(m1);
m_result = zeros(n, 1);
K = 0; % 冲突量
% 计算归一化因子和冲突
for i = 1:n
for j = 1:n
if ~isempty(intersect(find(F(i, :)), find(F(j, :))))
K = K + m1(i) * m2(j);
end
end
end
% 组合证据
for k = 1:n
for i = 1:n
for j = 1:n
if isequal(intersect(find(F(i, :)), find(F(j, :))), find(F(k, :)))
m_result(k) = m_result(k) + m1(i) * m2(j);
end
end
end
m_result(k) = m_result(k) / (1 - K);
end
end
二、应用示例:多传感器目标识别
matlab
% 示例:三个传感器对同一目标的识别结果
% 识别框架: A={目标1}, B={目标2}, C={目标3}, Θ={A,B,C} (全集)
% 定义焦元矩阵(one-hot编码)
F = eye(3); % 单个焦元
F = [F; ones(1, 3)]; % 添加全集Θ
% 三个传感器的证据(基本概率分配)
% 列表示传感器,行表示焦元:A, B, C, Θ
evidence_matrix = [
0.6, 0.05, 0.1; % 对A的支持
0.2, 0.8, 0.1; % 对B的支持
0.1, 0.1, 0.7; % 对C的支持
0.1, 0.05, 0.1 % 不确定部分(Θ)
];
% 计算Jousselme距离
dist_12 = JousselmeDistance(evidence_matrix(:,1), evidence_matrix(:,2), F);
dist_13 = JousselmeDistance(evidence_matrix(:,1), evidence_matrix(:,3), F);
dist_23 = JousselmeDistance(evidence_matrix(:,2), evidence_matrix(:,3), F);
fprintf('传感器1-2间距离: %.4f\n', dist_12);
fprintf('传感器1-3间距离: %.4f\n', dist_13);
fprintf('传感器2-3间距离: %.4f\n', dist_23);
% 计算证据权重
[weights, conflict_matrix] = CalculateEvidenceWeights(evidence_matrix, F);
fprintf('\n证据权重:\n');
disp(weights);
% 改进的证据融合
[m_fused_weighted, conflict1] = ImprovedDSFusion(evidence_matrix, F, 'weighted');
[m_fused_discount, conflict2] = ImprovedDSFusion(evidence_matrix, F, 'discount');
% 经典D-S融合(对比)
m_classic = evidence_matrix(:, 1);
for i = 2:3
m_classic = DempsterRule(m_classic, evidence_matrix(:, i), F);
end
% 结果显示
fprintf('\n========== 融合结果对比 ==========\n');
fprintf('焦元\t经典D-S\t加权法\t折扣法\n');
labels = {'目标A', '目标B', '目标C', '不确定'};
for i = 1:4
fprintf('%s\t%.4f\t%.4f\t%.4f\n', labels{i}, m_classic(i), ...
m_fused_weighted(i), m_fused_discount(i));
end
三、可视化分析工具
matlab
function VisualizeEvidenceAnalysis(evidences, F, m_fused)
% 可视化证据分析结果
figure('Position', [100, 100, 1200, 400]);
% 子图1:原始证据分布
subplot(1, 3, 1);
bar(evidences');
xlabel('焦元');
ylabel('基本概率分配');
title('原始证据分布');
legend({'传感器1', '传感器2', '传感器3'});
set(gca, 'XTickLabel', {'目标A', '目标B', '目标C', '不确定'});
grid on;
% 子图2:证据距离热图
subplot(1, 3, 2);
[~, conflict_matrix] = CalculateEvidenceWeights(evidences, F);
imagesc(conflict_matrix);
colorbar;
title('证据间Jousselme距离');
xlabel('证据索引');
ylabel('证据索引');
axis square;
% 子图3:融合结果对比
subplot(1, 3, 3);
m_classic = evidences(:, 1);
for i = 2:size(evidences, 2)
m_classic = DempsterRule(m_classic, evidences(:, i), F);
end
bar([m_classic, m_fused]');
xlabel('焦元');
ylabel('概率');
title('融合结果对比');
legend({'经典D-S', '改进D-S'});
set(gca, 'XTickLabel', {'目标A', '目标B', '目标C', '不确定'});
grid on;
% 计算并显示决策指标
[~, idx_classic] = max(m_classic(1:end-1));
[~, idx_improved] = max(m_fused(1:end-1));
fprintf('\n决策结果:\n');
fprintf('经典D-S: 选择目标%c (置信度: %.2f%%)\n', 'A'+idx_classic-1, m_classic(idx_classic)*100);
fprintf('改进D-S: 选择目标%c (置信度: %.2f%%)\n', 'A'+idx_improved-1, m_fused(idx_improved)*100);
end
四、针对高冲突证据的特殊处理
matlab
function m_fused = HandleHighConflictEvidence(evidences, F, threshold)
% 处理高冲突证据的鲁棒融合方法
% 当证据间距离过大时,采用不同的融合策略
n_evidences = size(evidences, 2);
% 计算平均冲突度
distances = zeros(n_evidences);
for i = 1:n_evidences
for j = i+1:n_evidences
distances(i, j) = JousselmeDistance(evidences(:, i), ...
evidences(:, j), F);
end
end
avg_distance = mean(distances(distances > 0));
if avg_distance > threshold
fprintf('检测到高冲突证据 (平均距离: %.3f > 阈值: %.3f)\n', ...
avg_distance, threshold);
fprintf('采用鲁棒融合策略...\n');
% 策略:使用Yager的修正方法或Murphy的平均法
% 这里采用Murphy的平均法作为示例
m_avg = mean(evidences, 2);
m_fused = m_avg;
for i = 2:n_evidences
m_fused = DempsterRule(m_fused, m_avg, F);
end
else
% 正常情况使用改进的加权法
m_fused = ImprovedDSFusion(evidences, F, 'weighted');
end
end
参考代码 基于Jousselme Distance来改进D-S证据理论的matlab程序 www.3dddown.com/csa/83315.html
五、使用建议与参数调优
关键参数调整
- Jousselme距离中的焦元编码 :根据实际问题设计合适的焦元矩阵
F - 权重计算方式:可修改支持度计算方法,如使用指数衰减函数
- 高冲突阈值:通常设置在0.5-0.8之间,需根据具体应用调整
应用扩展建议
matlab
% 扩展到更复杂的识别框架
% 例如:2^Θ 幂集上的焦元
function F = GeneratePowerSetFoci(n_elements)
% 生成幂集焦元的one-hot编码矩阵
total_foci = 2^n_elements;
F = zeros(total_foci, n_elements);
for i = 0:total_foci-1
binary_str = dec2bin(i, n_elements);
F(i+1, :) = str2num(binary_str(:)); %#ok<ST2NM>
end
end
% 应用于时间序列证据融合
function results = TimeSeriesEvidenceFusion(evidence_sequence, F, window_size)
% 对时间序列证据进行滑动窗口融合
n_steps = size(evidence_sequence, 3);
results = zeros(size(F, 1), n_steps);
for t = window_size:n_steps
window_evidence = evidence_sequence(:, :, t-window_size+1:t);
% 对窗口内的证据进行融合
for i = 1:window_size
% 可在此添加时间衰减权重
weights_time = exp(-0.1*(window_size-i)); % 指数衰减
% ... 融合逻辑
end
end
end
这个实现方案提供了从基础距离计算到完整融合系统的代码。主要改进在于利用Jousselme距离量化证据冲突,并基于此调整证据权重,从而在高冲突场景下获得更合理的融合结果。