前言
作为一名独立开发者,相信大家都有过这样的经历:技术没问题,能力也到位,但就是不知道做什么项目。在各种论坛找灵感,看到的都是"求推荐项目"、"有什么好做的"这样的帖子。
我被这个问题困扰了很久,最后决定用技术解决技术人的问题,做了 builtwhat.app ------ 一个用AI分析社交平台用户抱怨,然后转化成产品机会的平台。
今天分享一下技术实现过程。
核心思路
传统找项目的方式是主动搜索,效率低且容易陷入分析瘫痪。我的想法是:
用户的抱怨 = 产品的机会
社交平台上用户的真实抱怨往往代表着未被满足的需求,如果能系统性地分析这些抱怨,就能发现真正有价值的产品方向。
技术架构
总体架构图
markdown
┌─────────────────┐ ┌──────────────────┐ ┌─────────────────┐
│ 数据采集层 │────│ AI分析层 │────│ 应用服务层 │
│ │ │ │ │ │
│ • Reddit API │ │ • 情感分析 │ │ • Next.js 15 │
│ • Twitter API │ │ • 关键词提取 │ │ • React 19 │
│ • 爬虫系统 │ │ • 趋势分析 │ │ • TypeScript │
│ │ │ • GPT-4 处理 │ │ │
└─────────────────┘ └──────────────────┘ └─────────────────┘
│ │ │
│ ┌──────────────────┐ │
└──────────────│ Cloudflare │──────────────┘
│ │
│ • Workers │
│ • KV Storage │
│ • D1 Database │
└──────────────────┘
技术栈选择
前端:Next.js 15 + React 19
json
{
"next": "15.3.3",
"react": "19.0.0",
"typescript": "5.8.3"
}
选择最新版本主要考虑:
- React 19的并发特性提升用户体验
- Next.js 15的app router更好的SEO支持
- TypeScript保证代码质量
后端:Cloudflare Workers + Hono
javascript
// workers/api.ts
import { Hono } from 'hono'
import { cors } from 'hono/cors'
const app = new Hono()
app.use('*', cors({
origin: ['https://builtwhat.app'],
allowMethods: ['GET', 'POST', 'PUT', 'DELETE'],
}))
app.get('/api/inspiration/daily', async (c) => {
// 获取每日灵感逻辑
})
export default app
Cloudflare Workers的优势:
- 全球边缘部署,中美用户访问都很快
- 按需付费,成本可控
- 与其他Cloudflare服务集成度高
数据存储:PostgreSQL + Redis
- PostgreSQL:主要数据存储
- Redis:缓存和会话管理
- Cloudflare KV:静态数据缓存
核心功能实现
1. 数据采集系统
这是整个系统的基础,需要从多个平台采集用户抱怨数据。
python
# 数据采集示例 (Python)
import asyncio
import aiohttp
from dataclasses import dataclass
from typing import List
@dataclass
class UserComplaint:
platform: str
content: str
author: str
timestamp: str
engagement: int
class SocialMediaCollector:
def __init__(self):
self.platforms = ['reddit', 'twitter', 'hackernews']
async def collect_complaints(self) -> List[UserComplaint]:
tasks = []
async with aiohttp.ClientSession() as session:
for platform in self.platforms:
tasks.append(self._collect_from_platform(session, platform))
results = await asyncio.gather(*tasks)
return [item for sublist in results for item in sublist]
async def _collect_from_platform(self, session, platform):
# 具体的平台采集逻辑
# 使用合规的API或公开数据
pass
采集策略:
- 重点关注技术、产品、创业相关讨论
- 设置关键词过滤器提高数据质量
- 遵守各平台的API使用规范
2. AI分析引擎
这是核心的价值创造环节,需要从海量抱怨中识别真正的产品机会。
javascript
// AI分析流程
export class AIAnalysisEngine {
async analyzeComplaints(complaints) {
// 1. 情感分析
const sentimentResults = await this.sentimentAnalysis(complaints)
// 2. 关键词提取和聚类
const keywordClusters = await this.extractKeywords(complaints)
// 3. 市场潜力评估
const marketPotential = await this.assessMarketPotential(keywordClusters)
// 4. 产品机会生成
const opportunities = await this.generateOpportunities(
sentimentResults,
keywordClusters,
marketPotential
)
return opportunities
}
async sentimentAnalysis(complaints) {
// 使用预训练模型进行情感分析
const response = await fetch('https://api.openai.com/v1/chat/completions', {
method: 'POST',
headers: {
'Authorization': `Bearer ${process.env.OPENAI_API_KEY}`,
'Content-Type': 'application/json',
},
body: JSON.stringify({
model: 'gpt-4',
messages: [{
role: 'system',
content: 'You are a sentiment analysis expert. Analyze the frustration level and market potential of user complaints.'
}, {
role: 'user',
content: `Analyze these complaints: ${complaints.slice(0, 10).join('\n')}`
}],
})
})
return await response.json()
}
}
分析维度:
- 情感强度:抱怨的激烈程度
- 频次统计:同类问题出现的频率
- 用户画像:抱怨用户的背景分析
- 解决难度:技术实现的可行性评估
3. 内容策划系统
分析完成后,需要将原始数据包装成可读性强的产品机会描述。
javascript
// 内容生成器
export class ContentGenerator {
async generateInspiration(opportunity) {
const prompt = this.buildPrompt(opportunity)
const response = await this.callGPT4(prompt)
return {
title: response.title,
description: response.description,
painPoint: response.painPoint,
solution: response.solution,
marketSize: response.marketSize,
technicalRequirements: response.technicalRequirements,
competitorAnalysis: response.competitorAnalysis,
implementationSuggestions: response.implementationSuggestions
}
}
buildPrompt(opportunity) {
return `
Based on the following user complaints and analysis:
Raw Data: ${opportunity.rawComplaints}
Sentiment Score: ${opportunity.sentimentScore}
Frequency: ${opportunity.frequency}
User Demographics: ${opportunity.demographics}
Generate a comprehensive product opportunity including:
1. Clear problem statement
2. Proposed solution approach
3. Market size estimation
4. Technical implementation guidance
5. Potential competitors
6. Go-to-market suggestions
Format the response as JSON with the specified fields.
`
}
}
4. 用户界面实现
使用现代React技术栈构建用户友好的界面。
typescript
// components/DailyInspiration.tsx
'use client'
import { useState, useEffect } from 'react'
import { Card, CardContent, CardHeader, CardTitle } from '@/components/ui/card'
import { Badge } from '@/components/ui/badge'
import { Button } from '@/components/ui/button'
interface Inspiration {
id: string
title: string
description: string
painPoint: string
tags: string[]
difficulty: 'Easy' | 'Medium' | 'Hard'
marketSize: string
}
export function DailyInspiration() {
const [inspiration, setInspiration] = useState<Inspiration | null>(null)
const [loading, setLoading] = useState(true)
useEffect(() => {
fetchDailyInspiration()
}, [])
const fetchDailyInspiration = async () => {
try {
const response = await fetch('/api/inspiration/daily')
const data = await response.json()
setInspiration(data)
} catch (error) {
console.error('Failed to fetch inspiration:', error)
} finally {
setLoading(false)
}
}
if (loading) {
return <div className="flex justify-center p-8">Loading...</div>
}
if (!inspiration) {
return <div>No inspiration available</div>
}
return (
<Card className="max-w-2xl mx-auto">
<CardHeader>
<CardTitle className="flex items-center justify-between">
{inspiration.title}
<Badge variant={
inspiration.difficulty === 'Easy' ? 'secondary' :
inspiration.difficulty === 'Medium' ? 'default' : 'destructive'
}>
{inspiration.difficulty}
</Badge>
</CardTitle>
</CardHeader>
<CardContent>
<div className="space-y-4">
<div>
<h3 className="font-semibold text-red-600">痛点分析</h3>
<p className="text-gray-700">{inspiration.painPoint}</p>
</div>
<div>
<h3 className="font-semibold text-blue-600">解决方案</h3>
<p className="text-gray-700">{inspiration.description}</p>
</div>
<div className="flex flex-wrap gap-2">
{inspiration.tags.map((tag) => (
<Badge key={tag} variant="outline">{tag}</Badge>
))}
</div>
<div className="flex gap-2">
<Button size="sm">保存想法</Button>
<Button size="sm" variant="outline">分享讨论</Button>
</div>
</div>
</CardContent>
</Card>
)
}
遇到的技术挑战
1. 数据采集的限制
问题: 各大平台对API访问都有严格限制
解决方案:
- 分散请求时间,避免触发速率限制
- 使用多个数据源,降低单一平台依赖
- 实现智能重试机制和降级策略
javascript
// 智能重试机制
class RateLimitHandler {
constructor() {
this.retryDelays = [1000, 2000, 5000, 10000] // 指数退避
}
async fetchWithRetry(url, options, maxRetries = 4) {
for (let i = 0; i < maxRetries; i++) {
try {
const response = await fetch(url, options)
if (response.status === 429) { // Rate limited
await this.delay(this.retryDelays[i])
continue
}
return response
} catch (error) {
if (i === maxRetries - 1) throw error
await this.delay(this.retryDelays[i])
}
}
}
delay(ms) {
return new Promise(resolve => setTimeout(resolve, ms))
}
}
2. AI分析的准确性
问题: 如何确保AI分析的质量和相关性
解决方案:
- 建立多层过滤机制
- 人工审核关键环节
- 持续优化提示词工程
kotlin
// 质量评分系统
class QualityAssessment {
assessOpportunity(opportunity) {
let score = 0
// 1. 痛点明确性 (0-25分)
score += this.assessPainPointClarity(opportunity.painPoint)
// 2. 解决方案可行性 (0-25分)
score += this.assessSolutionFeasibility(opportunity.solution)
// 3. 市场需求验证 (0-25分)
score += this.assessMarketDemand(opportunity.marketData)
// 4. 技术实现难度 (0-25分)
score += this.assessTechnicalFeasibility(opportunity.technicalRequirements)
return {
score,
shouldPublish: score >= 70,
feedback: this.generateFeedback(score)
}
}
}
3. 性能优化
问题: 用户增长后的性能和成本控制
解决方案:
kotlin
// 缓存策略
export class CacheManager {
constructor() {
this.cache = new Map()
this.ttl = 24 * 60 * 60 * 1000 // 24小时缓存
}
async getDailyInspiration(date) {
const cacheKey = `daily_inspiration_${date}`
// 检查内存缓存
if (this.cache.has(cacheKey)) {
const cached = this.cache.get(cacheKey)
if (Date.now() - cached.timestamp < this.ttl) {
return cached.data
}
}
// 检查Cloudflare KV
const kvCached = await KV.get(cacheKey)
if (kvCached) {
const data = JSON.parse(kvCached)
this.cache.set(cacheKey, { data, timestamp: Date.now() })
return data
}
// 生成新数据
const freshData = await this.generateDailyInspiration(date)
// 存储到多级缓存
this.cache.set(cacheKey, { data: freshData, timestamp: Date.now() })
await KV.put(cacheKey, JSON.stringify(freshData), { expirationTtl: this.ttl / 1000 })
return freshData
}
}