SpringAi笔记

简介 :: Spring AI 中文文档

Spring AI 解决了 AI 集成的根本难题:将企业数据和 API 与 AI 模型连接起来。

聊天客户端 API (ChatClient )

发起对模型的调用和响应

  1. 创建:其中可以通过bean来注入创建好的chatClient
    可以使用@Qualifier注解,使用多模型,创建多chatClient
  2. ChatClient 响应
    1. 多种格式,包括flux
  1. 提示模板
    TemplateRenderer 作为模板引擎
  2. call返回值: 返回相应对象或字符串
  3. stream返回值:多种flux对象
  4. advisor
    1. Advisor API 为 Spring 应用中的 AI 驱动交互提供灵活强大的拦截、修改和增强能力。

    interface AdvisorSpec {
    AdvisorSpec param(String k, Object v);
    AdvisorSpec params(Map<String, Object> p);
    AdvisorSpec advisors(Advisor... advisors);
    AdvisorSpec advisors(List<Advisor> advisors);
    }

    ChatClient.builder(chatModel)
    .build()
    .prompt()
    .advisors(
    MessageChatMemoryAdvisor.builder(chatMemory).build(),
    QuestionAnswerAdvisor.builder(vectorStore).build()
    )
    .user(userText)
    .call()
    .content();

  1. 聊天记忆:
    ChatMemory 接口定义了聊天对话存储机制,当前内置实现MessageWindowChatMemory, 包括jdbc在内的多种存储方案

Advisor API

执行流程

  1. 实现示例,定义一个LoggerAdvisor

    public class SimpleLoggerAdvisor implements CallAroundAdvisor, StreamAroundAdvisor {

    复制代码
     @Override
     public AdvisedResponse aroundCall(AdvisedRequest advisedRequest, CallAroundAdvisorChain chain) {
    
     	logger.debug("BEFORE: {}", advisedRequest);
    
     	AdvisedResponse advisedResponse = chain.nextAroundCall(advisedRequest);
    
     	logger.debug("AFTER: {}", advisedResponse);
    
     	return advisedResponse;
     }
    
     @Override
     public Flux<AdvisedResponse> aroundStream(AdvisedRequest advisedRequest, StreamAroundAdvisorChain chain) {
    
     	logger.debug("BEFORE: {}", advisedRequest);
    
     	Flux<AdvisedResponse> advisedResponses = chain.nextAroundStream(advisedRequest);
    
         return new MessageAggregator().aggregateAdvisedResponse(advisedResponses,
                     advisedResponse -> logger.debug("AFTER: {}", advisedResponse)); 
     }

    }

Prompt

  1. 主要角色

    System 角色:指导 AI 的行为和响应风格,设定 AI 解释和回复输入的参数或规则,类似于在开始对话前向 AI 提供指令。
    User 角色:代表用户的输入 --- 包括问题、命令或对 AI 的陈述。该角色构成 AI 响应的基础,具有根本重要性。
    Assistant 角色:AI 对用户输入的响应,不仅是答案或反应,更对维持对话流至关重要。通过追踪 AI 之前的响应(其 "Assistant Role" 消息),系统确保连贯且上下文相关的交互。助手消息也可能包含函数工具调用请求信息 --- 这是 AI 的特殊功能,在需要时执行计算、获取数据等超越对话的特定任务。
    Tool/Function 角色:专注于响应工具调用类助手消息,返回附加信息。

PromptTemplate

复制代码
PromptTemplate promptTemplate = PromptTemplate.builder()
    .renderer(StTemplateRenderer.builder().startDelimiterToken('<').endDelimiterToken('>').build())
    .template("""
            Tell me the names of 5 movies whose soundtrack was composed by <composer>.
            """)
    .build();

String prompt = promptTemplate.render(Map.of("composer", "John Williams"));

PromptTemplate promptTemplate = new PromptTemplate("Tell me a {adjective} joke about {topic}");
Prompt prompt = promptTemplate.create(Map.of("adjective", adjective, "topic", topic));
return chatModel.call(prompt).getResult();

TOOlS

  1. 示例

    class DateTimeTools {

    复制代码
     @Tool(description = "Get the current date and time in the user's timezone")
     String getCurrentDateTime() {
         return LocalDateTime.now().atZone(LocaleContextHolder.getTimeZone().toZoneId()).toString();
     }
    
     @Tool(description = "Set a user alarm for the given time, provided in ISO-8601 format")
     void setAlarm(String time) {
         LocalDateTime alarmTime = LocalDateTime.parse(time, DateTimeFormatter.ISO_DATE_TIME);
         System.out.println("Alarm set for " + alarmTime);
     }

    }

    ChatModel chatModel = ...
    String response = ChatClient.create(chatModel)
    .prompt("Can you set an alarm 10 minutes from now?")
    .tools(new DateTimeTools())
    .call()
    .content();

    System.out.println(response);

  1. 创建tools的两种方式, tools注解,和通过MethodToolCallback的编程式配置

MCP

  1. mcp client

  2. mcp server

相关推荐
霜绛10 分钟前
Unity笔记(六)——Mathf、三角函数、坐标系、向量
笔记·学习·unity·游戏引擎
东风西巷32 分钟前
微软恶意软件删除工具:官方免费的系统安全防护利器
前端·安全·microsoft·系统安全·软件需求
阑梦清川1 小时前
如何使用notion搭建自己的个人知识库(第二大脑)
笔记
小xin过拟合2 小时前
day20 二叉树part7
开发语言·数据结构·c++·笔记·算法
ts码农3 小时前
blazor 学习笔记--vscode debug
笔记·vscode·学习
牛奶yu茶3 小时前
Python学习笔记之(二)变量和简单的数据类型
笔记·python·学习
易我数据恢复大师4 小时前
怎么把iphone文件传输到windows电脑?分场景选方法
windows·iphone·iphone文件传输·iphone文件传输到电脑·iphone传输文件
重启的码农5 小时前
Windows虚拟显示器MttVDD源码分析 (3) 驱动回调与入口点 (WDF/IddCx Callbacks)
c++·windows·操作系统
重启的码农5 小时前
Windows虚拟显示器MttVDD源码分析 (4) 间接设备上下文 (IndirectDeviceContext)
c++·windows·操作系统
重启的码农5 小时前
Windows虚拟显示器MttVDD源码分析 (2) EDID与显示器模拟
c++·windows·操作系统