SpringAi笔记

简介 :: Spring AI 中文文档

Spring AI 解决了 AI 集成的根本难题:将企业数据和 API 与 AI 模型连接起来。

聊天客户端 API (ChatClient )

发起对模型的调用和响应

  1. 创建:其中可以通过bean来注入创建好的chatClient
    可以使用@Qualifier注解,使用多模型,创建多chatClient
  2. ChatClient 响应
    1. 多种格式,包括flux
  1. 提示模板
    TemplateRenderer 作为模板引擎
  2. call返回值: 返回相应对象或字符串
  3. stream返回值:多种flux对象
  4. advisor
    1. Advisor API 为 Spring 应用中的 AI 驱动交互提供灵活强大的拦截、修改和增强能力。

    interface AdvisorSpec {
    AdvisorSpec param(String k, Object v);
    AdvisorSpec params(Map<String, Object> p);
    AdvisorSpec advisors(Advisor... advisors);
    AdvisorSpec advisors(List<Advisor> advisors);
    }

    ChatClient.builder(chatModel)
    .build()
    .prompt()
    .advisors(
    MessageChatMemoryAdvisor.builder(chatMemory).build(),
    QuestionAnswerAdvisor.builder(vectorStore).build()
    )
    .user(userText)
    .call()
    .content();

  1. 聊天记忆:
    ChatMemory 接口定义了聊天对话存储机制,当前内置实现MessageWindowChatMemory, 包括jdbc在内的多种存储方案

Advisor API

执行流程

  1. 实现示例,定义一个LoggerAdvisor

    public class SimpleLoggerAdvisor implements CallAroundAdvisor, StreamAroundAdvisor {

    复制代码
     @Override
     public AdvisedResponse aroundCall(AdvisedRequest advisedRequest, CallAroundAdvisorChain chain) {
    
     	logger.debug("BEFORE: {}", advisedRequest);
    
     	AdvisedResponse advisedResponse = chain.nextAroundCall(advisedRequest);
    
     	logger.debug("AFTER: {}", advisedResponse);
    
     	return advisedResponse;
     }
    
     @Override
     public Flux<AdvisedResponse> aroundStream(AdvisedRequest advisedRequest, StreamAroundAdvisorChain chain) {
    
     	logger.debug("BEFORE: {}", advisedRequest);
    
     	Flux<AdvisedResponse> advisedResponses = chain.nextAroundStream(advisedRequest);
    
         return new MessageAggregator().aggregateAdvisedResponse(advisedResponses,
                     advisedResponse -> logger.debug("AFTER: {}", advisedResponse)); 
     }

    }

Prompt

  1. 主要角色

    System 角色:指导 AI 的行为和响应风格,设定 AI 解释和回复输入的参数或规则,类似于在开始对话前向 AI 提供指令。
    User 角色:代表用户的输入 --- 包括问题、命令或对 AI 的陈述。该角色构成 AI 响应的基础,具有根本重要性。
    Assistant 角色:AI 对用户输入的响应,不仅是答案或反应,更对维持对话流至关重要。通过追踪 AI 之前的响应(其 "Assistant Role" 消息),系统确保连贯且上下文相关的交互。助手消息也可能包含函数工具调用请求信息 --- 这是 AI 的特殊功能,在需要时执行计算、获取数据等超越对话的特定任务。
    Tool/Function 角色:专注于响应工具调用类助手消息,返回附加信息。

PromptTemplate

复制代码
PromptTemplate promptTemplate = PromptTemplate.builder()
    .renderer(StTemplateRenderer.builder().startDelimiterToken('<').endDelimiterToken('>').build())
    .template("""
            Tell me the names of 5 movies whose soundtrack was composed by <composer>.
            """)
    .build();

String prompt = promptTemplate.render(Map.of("composer", "John Williams"));

PromptTemplate promptTemplate = new PromptTemplate("Tell me a {adjective} joke about {topic}");
Prompt prompt = promptTemplate.create(Map.of("adjective", adjective, "topic", topic));
return chatModel.call(prompt).getResult();

TOOlS

  1. 示例

    class DateTimeTools {

    复制代码
     @Tool(description = "Get the current date and time in the user's timezone")
     String getCurrentDateTime() {
         return LocalDateTime.now().atZone(LocaleContextHolder.getTimeZone().toZoneId()).toString();
     }
    
     @Tool(description = "Set a user alarm for the given time, provided in ISO-8601 format")
     void setAlarm(String time) {
         LocalDateTime alarmTime = LocalDateTime.parse(time, DateTimeFormatter.ISO_DATE_TIME);
         System.out.println("Alarm set for " + alarmTime);
     }

    }

    ChatModel chatModel = ...
    String response = ChatClient.create(chatModel)
    .prompt("Can you set an alarm 10 minutes from now?")
    .tools(new DateTimeTools())
    .call()
    .content();

    System.out.println(response);

  1. 创建tools的两种方式, tools注解,和通过MethodToolCallback的编程式配置

MCP

  1. mcp client

  2. mcp server

相关推荐
m0_6896182810 分钟前
突破亚微米光电子器件制造瓶颈!配体交换辅助打印技术实现全打印红外探测器
笔记·制造
是店小二呀17 分钟前
远程办公自由:rdesktop+cpolar让Windows桌面随身而行
windows
油丶酸萝卜别吃1 小时前
java8中常用的工具函数
windows
Bruce_Liuxiaowei1 小时前
Win7虚拟机加入域错误排查指南:解决无法启动服务问题
运维·网络·windows·安全·网络安全
chenzhou__3 小时前
MYSQL学习笔记(个人)(第十五天)
linux·数据库·笔记·学习·mysql
rechol4 小时前
C++ 继承笔记
java·c++·笔记
JJJJ_iii6 小时前
【机器学习01】监督学习、无监督学习、线性回归、代价函数
人工智能·笔记·python·学习·机器学习·jupyter·线性回归
雨中风华6 小时前
Windows 平台 HOOK DWM 桌面管理程序,实现输出变形的桌面图像到显示器
windows·计算机外设
做咩啊~7 小时前
Windows家庭版远程时提示‘这可能是因为在远程计算机上阻止 NTLM 身份验证 这也可能是由于 CredSSP 加密 Oracle 修正所导致的。’
windows
淮北49410 小时前
windows安装minicoda
windows·python·conda