Visual Prompt Tuning核心思路讲解(个人总结)

VPT的核心思想是,在适配下游任务时,我们应当冻结 (freeze) 强大的预训练模型本身,只通过训练一小组额外添加的、轻量级的提示 (Prompts) 来引导模型的行为。

这很容易理解,想想GPT:为什么一个Transformer Decoder能做这么多事?就是因为对于不同的任务,我们会喂给模型不同的prompt麻。

前置知识(prompt tuning)

这里说一下prompt tuning。

研究者发现,人想出来的文字指令不一定是最高效的。于是,一个聪明的想法诞生了:

我们不再手动设计文字,而是创建几个可学习的虚拟指令 (learnable vectors)。我们冻结大模型,只训练这几个"虚拟指令",让机器自己学会针对特定任务的、最高效的"暗号"。

VPT就是将这个思想完美地迁移到了视觉领域。它解决了核心问题:对于一个看图的模型,它的"暗号"应该是什么?答案就是可学习的提示向量 (Prompt Tokens)。

VPT的核心方法

  • 首先,准备一个强大的、已预训练好的Vision Transformer (ViT) 模型,并冻结其所有参数。这意味着ViT本身庞大的知识库在整个微调过程中保持不变。

  • 创建一小组(例如 k=10k=10k=10 个)全新的、可学习的向量,称为提示向量(Prompt Tokens)

  • 在处理一张图片时,ViT会先将其切分为一系列图像块向量 (patch tokens)。我们将上一步创建的"提示向量"插入到这串图像块向量序列的最前面。

  • 在训练时,只有这些新插入的"提示向量"和任务所需的分类头 (classification head) 会被更新。整个ViT主干网络(上亿参数)不参与梯度更新。

  • 训练的目标是,让这些最初随机的"提示向量"学会充当一个任务指令。例如,在飞机型号识别任务中,这些提示会通过学习,演变成一种能引导ViT模型将注意力高度集中于区分不同飞机(如波音系列)细微特征的"控制信号"。

相关推荐
da_vinci_x10 小时前
PS 3D Viewer:3D模型直接拖进画布?宣发美工的“降维打击”
游戏·3d·prompt·aigc·技术美术·建模·游戏美术
红蒲公英13 小时前
( 教学 )Agent 构建 Prompt(提示词)3. StructuredOutputParser (结构化输出)
人工智能·python·prompt
小马爱打代码1 天前
Spring AI:提示词工程 - Prompt 角色分类(系统角色与用户角色)
人工智能·spring·prompt
Swizard1 天前
Claude Opus 4.5 深度解构:当 AI 学会了“拒绝道歉”与“痛恨列表”
ai·llm·prompt·claude
三金121382 天前
初学Prompt工程
大数据·人工智能·prompt
wanghao6664552 天前
如何写 prompt 提示词
prompt
智元视界2 天前
农业AI化:如何让一台无人机懂得“看天种地”?
大数据·人工智能·prompt·无人机·数字化转型·产业升级
低调小一2 天前
从聊天记录到单一 Prompt:搞懂 Messages、Chat Templates、Special Tokens
人工智能·prompt
我太想进步了C~~2 天前
个人使用ai学习的学习框架搭建prompt版本
prompt
桃子叔叔2 天前
Prompt Engineering 完全指南:从基础到高阶技术深度解析
大数据·人工智能·prompt