Visual Prompt Tuning核心思路讲解(个人总结)

VPT的核心思想是,在适配下游任务时,我们应当冻结 (freeze) 强大的预训练模型本身,只通过训练一小组额外添加的、轻量级的提示 (Prompts) 来引导模型的行为。

这很容易理解,想想GPT:为什么一个Transformer Decoder能做这么多事?就是因为对于不同的任务,我们会喂给模型不同的prompt麻。

前置知识(prompt tuning)

这里说一下prompt tuning。

研究者发现,人想出来的文字指令不一定是最高效的。于是,一个聪明的想法诞生了:

我们不再手动设计文字,而是创建几个可学习的虚拟指令 (learnable vectors)。我们冻结大模型,只训练这几个"虚拟指令",让机器自己学会针对特定任务的、最高效的"暗号"。

VPT就是将这个思想完美地迁移到了视觉领域。它解决了核心问题:对于一个看图的模型,它的"暗号"应该是什么?答案就是可学习的提示向量 (Prompt Tokens)。

VPT的核心方法

  • 首先,准备一个强大的、已预训练好的Vision Transformer (ViT) 模型,并冻结其所有参数。这意味着ViT本身庞大的知识库在整个微调过程中保持不变。

  • 创建一小组(例如 k=10k=10k=10 个)全新的、可学习的向量,称为提示向量(Prompt Tokens)

  • 在处理一张图片时,ViT会先将其切分为一系列图像块向量 (patch tokens)。我们将上一步创建的"提示向量"插入到这串图像块向量序列的最前面。

  • 在训练时,只有这些新插入的"提示向量"和任务所需的分类头 (classification head) 会被更新。整个ViT主干网络(上亿参数)不参与梯度更新。

  • 训练的目标是,让这些最初随机的"提示向量"学会充当一个任务指令。例如,在飞机型号识别任务中,这些提示会通过学习,演变成一种能引导ViT模型将注意力高度集中于区分不同飞机(如波音系列)细微特征的"控制信号"。

相关推荐
leo030817 小时前
7种流行Prompt设计模式详解:适用场景与最佳实践
设计模式·prompt
风雨中的小七1 天前
解密prompt系列60. Agent实战:从0搭建Jupter数据分析智能体
prompt
zzywxc7872 天前
AI在金融、医疗、教育、制造业等领域的落地案例(含代码、流程图、Prompt示例与图表)
人工智能·spring·机器学习·金融·数据挖掘·prompt·流程图
bboyzqh2 天前
任务型Agent:prompt工程实践
大模型·prompt·上下文工程
美人鱼战士爱学习3 天前
2024 arXiv Cost-Efficient Prompt Engineering for Unsupervised Entity Resolution
prompt
水的精神3 天前
写好 Prompt 的 12 条实践经验
prompt
Wilber的技术分享3 天前
【大模型实战笔记 1】Prompt-Tuning方法
人工智能·笔记·机器学习·大模型·llm·prompt
relis3 天前
解密llama.cpp:Prompt Processing如何实现高效推理?
prompt·llama
relis4 天前
解密大语言模型推理:Prompt Processing 的内存管理与计算优化
android·语言模型·prompt
relis4 天前
大语言模型推理的幕后英雄:深入解析Prompt Processing工作机制
人工智能·语言模型·prompt