数据治理的长效机制

本文分享自天翼云开发者社区《数据治理的长效机制》,作者:徐****东

数据治理遇到的困难

数据治理是一个复杂而又富有挑战性的工作,需要各级管理人员和业务部门的积极参与和协作。虽然数据治理的目标"协同、降本、提效、创新"看似简单明了,但在实际操作中却会遇到各种各样的问题。

问题1:组织运行依靠行政指令协调,高层主管忙于事务性工作,无暇顾及数据战略规划和落地。

问题2:部门墙厚重,数据治理推进受阻,业务部门只关注自身利益,缺乏全局数据意识,跨部门协调困难。

问题3:业务部门和技术部门相互推诿,数据质量问题无法根本解决。

问题4:权本位思想严重,员工习惯于根据领导的指令办事,制定的数据治理流程执行不到位,导致流程形同虚设。

问题5:数据治理以项目形式运作,项目结束后数据治理工作也结束了。

三位一体的数据治理体系

建立数据治理体系,需从三个维度入手:

业务方面:数据治理应以业务需求为导向,解决管理层和业务部门的数据问题、痛点以及用数需求。

技术方面:构建以元数据为基础、数据标准为核心、主数据和参照数据为关键、提升数据质量为目标的数据治理体系。

组织方面:数据治理组织是跨职能的,通常企业会建立数据治理委员会和执行团队等组织,负责整体数据战略、数据政策、数据标准、数据度量指标等数据治理规程问题。

以数据治理促进业务协同

业务协同中的数据问题主要源于以下几个方面:

1、数据语义不明确,同一数据在各个业务部门和个人中的理解存在差异

2、数据分类和编码的不统一是另一个主要问题。

3、不同业务部门的统计维度和算法不一致,给决策带来困惑和不确定性。

4、数据管理职责不明确。当出现数据质量问题或安全问题时,部门之间往往会出现相互推诿和扯皮的情况。

通过数据治理,可以打破企业内的数据孤岛现象,实现数据共享,进而打通部门隔阂,促进企业各业务部门之间的协同合作。

以业务协同反哺数据治理

数据治理和业务协同是相互促进的关系,而不是相互独立的。数据治理可以优化业务流程和规范操作,提高数据质量,从而更好地支持业务协同的实现。同时,跨业务协同也可以促进不同业务部门之间的交流与合作,加强信息共享和资源整合,实现更高效、更协调的业务运作。因此,通过数据治理和业务协同的相互支持,企业可以获得更好的整体效益。

相关推荐
Hello.Reader14 分钟前
Flink Operations Playground 部署、观测、容错、升级与弹性扩缩
大数据·flink
weixin_lynhgworld1 小时前
短剧小程序系统开发:引领影视行业数字化转型浪潮
大数据·小程序
计算机毕设残哥1 小时前
【Spark+Hive+hadoop】人类健康生活方式数据分析
大数据·hive·hadoop·python·数据分析·spark·dash
货拉拉技术1 小时前
货拉拉离线大数据跨云迁移 - 数据迁移篇
大数据·云原生
MATLAB代码顾问2 小时前
Python实现星雀优化算法(Nutcracker Optimizer Algorithm, NOA) (附完整代码)
大数据·python·excel
小小王app小程序开发3 小时前
盲盒一番赏小程序用户需求分析:从行为动机到功能诉求的深度拆解
大数据
UMI赋能企业3 小时前
AI 绘画的未来趋势与发展前景
大数据·人工智能
Lx3523 小时前
Hadoop批流一体化处理:实时与离线作业融合
大数据·hadoop
zskj_qcxjqr3 小时前
中医智慧+AI科技,七彩喜机器人让健康养护“智”在必得
大数据·人工智能·科技·机器人
TanYYF3 小时前
Elasticsearch 7.15索引模板介绍
大数据·elasticsearch