用Python实现神经网络(四)

使用多层神经网络

我们展示如何用TensorFlow构建多层神经网络

###低出生率数据 Low Birthrate data:

复制代码
#Columns    Variable                                      Abbreviation
复制代码
#---------------------------------------------------------------------
复制代码
# Low Birth Weight (0 = Birth Weight >= 2500g,            LOW
复制代码
#                          1 = Birth Weight < 2500g)
复制代码
# Age of the Mother in Years                              AGE
复制代码
# Weight in Pounds at the Last Menstrual Period           LWT
复制代码
# Race (1 = White, 2 = Black, 3 = Other)                  RACE
复制代码
# Smoking Status During Pregnancy (1 = Yes, 0 = No)       SMOKE
复制代码
# History of Premature Labor (0 = None  1 = One, etc.)    PTL
复制代码
# History of Hypertension (1 = Yes, 0 = No)               HT
复制代码
# Presence of Uterine Irritability (1 = Yes, 0 = No)      UI
复制代码
# Birth Weight in Grams                                   BWT
复制代码
#---------------------------------------------------------------------

我们要创建的多层神经网络由三个全链接隐藏层组成, 节点数分别为 50, 25, 和 5

import tensorflow as tf

import matplotlib.pyplot as plt

import csv

import os

import os.path

import random

import numpy as np

import random

import requests

from tensorflow.python.framework import ops

name of data file

birth_weight_file = 'birth_weight.csv'

download data and create data file if file does not exist in current directory

if not os.path.exists(birth_weight_file):

birthdata_url = 'https://github.com/nfmcclure/tensorflow_cookbook/raw/master/01_Introduction/07_Working_with_Data_Sources/birthweight_data/birthweight.dat'

birth_file = requests.get(birthdata_url)

birth_data = birth_file.text.split('\r\n')

birth_header = birth_data[0].split('\t')

birth_data = [[float(x) for x in y.split('\t') if len(x)>=1] for y in birth_data[1:] if len(y)>=1]

with open(birth_weight_file, "w") as f:

writer = csv.writer(f)

writer.writerows([birth_header])

writer.writerows(birth_data)

f.close()

read birth weight data into memory

birth_data = []

with open(birth_weight_file, newline='') as csvfile:

csv_reader = csv.reader(csvfile)

birth_header = next(csv_reader)

for row in csv_reader:

birth_data.append(row)

birth_data = [[float(x) for x in row] for row in birth_data]

birth_data

Extract y-target (birth weight)

y_vals = np.array([x[8:9] for x in birth_data])

Filter for features of interest

cols_of_interest = ['AGE', 'LWT', 'RACE', 'SMOKE', 'PTL', 'HT', 'UI']

x_vals = np.array([[x[ix] for ix, feature in enumerate(birth_header) if feature in cols_of_interest] for x in birth_data])

set batch size for training

batch_size = 10

make results reproducible

seed = 3

np.random.seed(seed)

#tf.set_random_seed(seed)

Split data into train/test = 80%/20%

train_indices = np.random.choice(len(x_vals), round(len(x_vals)*0.8), replace=False)

test_indices = np.array(list(set(range(len(x_vals))) - set(train_indices)))

x_vals_train = x_vals[train_indices]

x_vals_test = x_vals[test_indices]

y_vals_train = y_vals[train_indices]

y_vals_test = y_vals[test_indices]

Record training column max and min for scaling of non-training data

train_max = np.max(x_vals_train, axis=0)

train_min = np.min(x_vals_train, axis=0)

Normalize by column (min-max norm to be between 0 and 1)

def normalize_cols(mat, max_vals, min_vals):

return (mat - min_vals) / (max_vals - min_vals)

x_vals_train = np.nan_to_num(normalize_cols(x_vals_train, train_max, train_min))

x_vals_test = np.nan_to_num(normalize_cols(x_vals_test, train_max, train_min))

#定义权重和偏置。

Define Variable Functions (weights and bias)

def init_weight(shape, st_dev):

weight = tf.Variable(tf.random.normal(shape, stddev=st_dev))

return(weight)

def init_bias(shape, st_dev):

bias = tf.Variable(tf.random.normal(shape, stddev=st_dev))

return(bias)

#定义模型!我们先创建一个根据变量生成全链接层的函数。

x_data = tf.Variable(np.random.randn(1,7),dtype=tf.float32)

y_target = tf.Variable(np.random.randn(1,1),dtype=tf.float32)

Create a fully connected layer:

def fully_connected(input_layer, weights, biases):

layer = tf.add(tf.matmul(input_layer, weights), biases)

return(tf.nn.relu(layer))

#我们初始化变量并开始训练循环。

learning_rate=0.001

Training loop

loss_vec = []

test_loss = []

weight_1 = init_weight(shape=[7, 25], st_dev=1.0)

bias_1 = init_bias(shape=[25], st_dev=10.0)

weight_2 = init_weight(shape=[25, 10], st_dev=1.0)

bias_2 = init_bias(shape=[10], st_dev=10.0)

weight_3 = init_weight(shape=[10, 3], st_dev=1.0)

bias_3 = init_bias(shape=[3], st_dev=10.0)

weight_4 = init_weight(shape=[3, 1], st_dev=1.0)

bias_4 = init_bias(shape=[1], st_dev=1.0)

for i in range(3000):

rand_index = np.random.choice(len(x_vals_train), size=batch_size)

rand_x = x_vals_train[rand_index]

rand_y = np.transpose([y_vals_train[rand_index]])

with tf.GradientTape() as tape:

#--------Create the first layer (50 hidden nodes)--------

layer_1 = fully_connected(x_data, weight_1, bias_1)

#--------Create second layer (25 hidden nodes)--------

layer_2 = fully_connected(layer_1, weight_2, bias_2)

#--------Create third layer (5 hidden nodes)--------

layer_3 = fully_connected(layer_2, weight_3, bias_3)

#--------Create output layer (1 output value)--------

final_output = fully_connected(layer_3, weight_4, bias_4)

Declare loss function (L1)

loss = tf.reduce_mean(tf.abs(y_target - final_output))

grads=tape.gradient(loss,[weight_1,bias_1,weight_2,bias_2,weight_3,bias_3,weight_4,bias_4])

loss_vec.append(loss)

weight_1.assign_sub(learning_rate*grads[0])

bias_1.assign_sub(learning_rate*grads[1])

weight_2.assign_sub(learning_rate*grads[2])

bias_2.assign_sub(learning_rate*grads[3])

weight_3.assign_sub(learning_rate*grads[4])

bias_3.assign_sub(learning_rate*grads[5])

weight_4.assign_sub(learning_rate*grads[6])

bias_4.assign_sub(learning_rate*grads[7])

#test_loss.append(test_temp_loss)

if (i+1) % 25 == 0:

print('Generation: ' + str(i+1) + '. Loss = ' + str(loss.numpy()))

#绘制损失函数。

%matplotlib inline

Plot loss (MSE) over time

plt.plot(loss_vec, 'k-', label='Train Loss')

#plt.plot(test_loss, 'r--', label='Test Loss')

plt.title('Loss (MSE) per Generation')

plt.legend(loc='upper right')

plt.xlabel('Generation')

plt.ylabel('Loss')

plt.show()

Create variable definition

def init_variable(shape):

return(tf.Variable(tf.random.normal(shape=shape)))

Create a logistic layer definition

def logistic(input_layer, multiplication_weight, bias_weight, activation = True):

linear_layer = tf.add(tf.matmul(input_layer, multiplication_weight), bias_weight)

We separate the activation at the end because the loss function will

implement the last sigmoid necessary

if activation:

return(tf.nn.sigmoid(linear_layer))

else:

return(linear_layer)

Declare optimizer

#my_opt = tf.train.AdamOptimizer(learning_rate = 0.002)

#train_step = my_opt.minimize(loss)

Actual Prediction

A1 = init_variable(shape=[7,14])

b1 = init_variable(shape=[14])

A2 = init_variable(shape=[14,5])

b2 = init_variable(shape=[5])

A3 = init_variable(shape=[5,1])

b3 = init_variable(shape=[1])

optimizer = tf.optimizers.SGD(learning_rate)

Training loop

loss_vec = []

train_acc = []

test_acc = []

for i in range(3000):

rand_index = np.random.choice(len(x_vals_train), size=batch_size)

rand_x = x_vals_train[rand_index]

rand_y = np.transpose([y_vals_train[rand_index]])

with tf.GradientTape() as tape:

First logistic layer (7 inputs to 14 hidden nodes)

logistic_layer1 = logistic(x_data, A1, b1)

Second logistic layer (14 hidden inputs to 5 hidden nodes)

logistic_layer2 = logistic(logistic_layer1, A2, b2)

Final output layer (5 hidden nodes to 1 output)

final_output = logistic(logistic_layer2, A3, b3, activation=False)

Declare loss function (Cross Entropy loss)

loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=final_output, labels=y_target))

grads=tape.gradient(loss,[A1,b1,A2,b2,A3,b3])

optimizer.apply_gradients(zip(grads, [A1,b1,A2,b2,A3,b3]))

loss_vec.append(loss)

#A1.assign_sub(learning_rate*grads[0])

#b1.assign_sub(learning_rate*grads[1])

#A2.assign_sub(learning_rate*grads[2])

#b2.assign_sub(learning_rate*grads[3])

#A3.assign_sub(learning_rate*grads[4])

#b3.assign_sub(learning_rate*grads[5])

if (i+1)%150==0:

print('Loss = ' + str(loss.numpy()))

%matplotlib inline

Plot loss over time

plt.plot(loss_vec, 'k-')

plt.title('Cross Entropy Loss per Generation')

plt.xlabel('Generation')

plt.ylabel('Cross Entropy Loss')

plt.show()

相关推荐
java1234_小锋12 分钟前
[免费]基于Python的在线音乐网站系统(后端Django)【论文+源码+SQL脚本】
python·在线音乐·django音乐·python音乐·python在线音乐
无垠的广袤1 小时前
【LattePanda Mu 开发套件】AI 图像识别网页服务器
服务器·人工智能·python·单片机·嵌入式硬件·物联网
Derrick__12 小时前
Python常用三方模块——Pillow
开发语言·python·pillow
小蕾Java2 小时前
PyCharm保姆级详细使用手册(Python新手快速上手篇)
ide·python·pycharm
阿星_2 小时前
PyCharm项目依赖库的备份与还原方法
linux·服务器·python
无风听海2 小时前
神经网络之Softmax激活函数求导过程
人工智能·深度学习·神经网络
youcans_2 小时前
【Trae】Trae 插件实战手册(1)PyCharm 安装 Trae
人工智能·python·pycharm·ai编程·trae
xuegao08072 小时前
WSL安装并配置到pyCharm
ide·python·pycharm
理智的煎蛋2 小时前
基于 Celery 的分布式文件监控系统
redis·分布式·python·mysql·mongodb
MoRanzhi12033 小时前
0. NumPy 系列教程:科学计算与数据分析实战
人工智能·python·机器学习·数据挖掘·数据分析·numpy·概率论