用Python实现神经网络(四)

使用多层神经网络

我们展示如何用TensorFlow构建多层神经网络

###低出生率数据 Low Birthrate data:

复制代码
#Columns    Variable                                      Abbreviation
复制代码
#---------------------------------------------------------------------
复制代码
# Low Birth Weight (0 = Birth Weight >= 2500g,            LOW
复制代码
#                          1 = Birth Weight < 2500g)
复制代码
# Age of the Mother in Years                              AGE
复制代码
# Weight in Pounds at the Last Menstrual Period           LWT
复制代码
# Race (1 = White, 2 = Black, 3 = Other)                  RACE
复制代码
# Smoking Status During Pregnancy (1 = Yes, 0 = No)       SMOKE
复制代码
# History of Premature Labor (0 = None  1 = One, etc.)    PTL
复制代码
# History of Hypertension (1 = Yes, 0 = No)               HT
复制代码
# Presence of Uterine Irritability (1 = Yes, 0 = No)      UI
复制代码
# Birth Weight in Grams                                   BWT
复制代码
#---------------------------------------------------------------------

我们要创建的多层神经网络由三个全链接隐藏层组成, 节点数分别为 50, 25, 和 5

import tensorflow as tf

import matplotlib.pyplot as plt

import csv

import os

import os.path

import random

import numpy as np

import random

import requests

from tensorflow.python.framework import ops

name of data file

birth_weight_file = 'birth_weight.csv'

download data and create data file if file does not exist in current directory

if not os.path.exists(birth_weight_file):

birthdata_url = 'https://github.com/nfmcclure/tensorflow_cookbook/raw/master/01_Introduction/07_Working_with_Data_Sources/birthweight_data/birthweight.dat'

birth_file = requests.get(birthdata_url)

birth_data = birth_file.text.split('\r\n')

birth_header = birth_data[0].split('\t')

birth_data = [[float(x) for x in y.split('\t') if len(x)>=1] for y in birth_data[1:] if len(y)>=1]

with open(birth_weight_file, "w") as f:

writer = csv.writer(f)

writer.writerows([birth_header])

writer.writerows(birth_data)

f.close()

read birth weight data into memory

birth_data = []

with open(birth_weight_file, newline='') as csvfile:

csv_reader = csv.reader(csvfile)

birth_header = next(csv_reader)

for row in csv_reader:

birth_data.append(row)

birth_data = [[float(x) for x in row] for row in birth_data]

birth_data

Extract y-target (birth weight)

y_vals = np.array([x[8:9] for x in birth_data])

Filter for features of interest

cols_of_interest = ['AGE', 'LWT', 'RACE', 'SMOKE', 'PTL', 'HT', 'UI']

x_vals = np.array([[x[ix] for ix, feature in enumerate(birth_header) if feature in cols_of_interest] for x in birth_data])

set batch size for training

batch_size = 10

make results reproducible

seed = 3

np.random.seed(seed)

#tf.set_random_seed(seed)

Split data into train/test = 80%/20%

train_indices = np.random.choice(len(x_vals), round(len(x_vals)*0.8), replace=False)

test_indices = np.array(list(set(range(len(x_vals))) - set(train_indices)))

x_vals_train = x_vals[train_indices]

x_vals_test = x_vals[test_indices]

y_vals_train = y_vals[train_indices]

y_vals_test = y_vals[test_indices]

Record training column max and min for scaling of non-training data

train_max = np.max(x_vals_train, axis=0)

train_min = np.min(x_vals_train, axis=0)

Normalize by column (min-max norm to be between 0 and 1)

def normalize_cols(mat, max_vals, min_vals):

return (mat - min_vals) / (max_vals - min_vals)

x_vals_train = np.nan_to_num(normalize_cols(x_vals_train, train_max, train_min))

x_vals_test = np.nan_to_num(normalize_cols(x_vals_test, train_max, train_min))

#定义权重和偏置。

Define Variable Functions (weights and bias)

def init_weight(shape, st_dev):

weight = tf.Variable(tf.random.normal(shape, stddev=st_dev))

return(weight)

def init_bias(shape, st_dev):

bias = tf.Variable(tf.random.normal(shape, stddev=st_dev))

return(bias)

#定义模型!我们先创建一个根据变量生成全链接层的函数。

x_data = tf.Variable(np.random.randn(1,7),dtype=tf.float32)

y_target = tf.Variable(np.random.randn(1,1),dtype=tf.float32)

Create a fully connected layer:

def fully_connected(input_layer, weights, biases):

layer = tf.add(tf.matmul(input_layer, weights), biases)

return(tf.nn.relu(layer))

#我们初始化变量并开始训练循环。

learning_rate=0.001

Training loop

loss_vec = []

test_loss = []

weight_1 = init_weight(shape=[7, 25], st_dev=1.0)

bias_1 = init_bias(shape=[25], st_dev=10.0)

weight_2 = init_weight(shape=[25, 10], st_dev=1.0)

bias_2 = init_bias(shape=[10], st_dev=10.0)

weight_3 = init_weight(shape=[10, 3], st_dev=1.0)

bias_3 = init_bias(shape=[3], st_dev=10.0)

weight_4 = init_weight(shape=[3, 1], st_dev=1.0)

bias_4 = init_bias(shape=[1], st_dev=1.0)

for i in range(3000):

rand_index = np.random.choice(len(x_vals_train), size=batch_size)

rand_x = x_vals_train[rand_index]

rand_y = np.transpose([y_vals_train[rand_index]])

with tf.GradientTape() as tape:

#--------Create the first layer (50 hidden nodes)--------

layer_1 = fully_connected(x_data, weight_1, bias_1)

#--------Create second layer (25 hidden nodes)--------

layer_2 = fully_connected(layer_1, weight_2, bias_2)

#--------Create third layer (5 hidden nodes)--------

layer_3 = fully_connected(layer_2, weight_3, bias_3)

#--------Create output layer (1 output value)--------

final_output = fully_connected(layer_3, weight_4, bias_4)

Declare loss function (L1)

loss = tf.reduce_mean(tf.abs(y_target - final_output))

grads=tape.gradient(loss,[weight_1,bias_1,weight_2,bias_2,weight_3,bias_3,weight_4,bias_4])

loss_vec.append(loss)

weight_1.assign_sub(learning_rate*grads[0])

bias_1.assign_sub(learning_rate*grads[1])

weight_2.assign_sub(learning_rate*grads[2])

bias_2.assign_sub(learning_rate*grads[3])

weight_3.assign_sub(learning_rate*grads[4])

bias_3.assign_sub(learning_rate*grads[5])

weight_4.assign_sub(learning_rate*grads[6])

bias_4.assign_sub(learning_rate*grads[7])

#test_loss.append(test_temp_loss)

if (i+1) % 25 == 0:

print('Generation: ' + str(i+1) + '. Loss = ' + str(loss.numpy()))

#绘制损失函数。

%matplotlib inline

Plot loss (MSE) over time

plt.plot(loss_vec, 'k-', label='Train Loss')

#plt.plot(test_loss, 'r--', label='Test Loss')

plt.title('Loss (MSE) per Generation')

plt.legend(loc='upper right')

plt.xlabel('Generation')

plt.ylabel('Loss')

plt.show()

Create variable definition

def init_variable(shape):

return(tf.Variable(tf.random.normal(shape=shape)))

Create a logistic layer definition

def logistic(input_layer, multiplication_weight, bias_weight, activation = True):

linear_layer = tf.add(tf.matmul(input_layer, multiplication_weight), bias_weight)

We separate the activation at the end because the loss function will

implement the last sigmoid necessary

if activation:

return(tf.nn.sigmoid(linear_layer))

else:

return(linear_layer)

Declare optimizer

#my_opt = tf.train.AdamOptimizer(learning_rate = 0.002)

#train_step = my_opt.minimize(loss)

Actual Prediction

A1 = init_variable(shape=[7,14])

b1 = init_variable(shape=[14])

A2 = init_variable(shape=[14,5])

b2 = init_variable(shape=[5])

A3 = init_variable(shape=[5,1])

b3 = init_variable(shape=[1])

optimizer = tf.optimizers.SGD(learning_rate)

Training loop

loss_vec = []

train_acc = []

test_acc = []

for i in range(3000):

rand_index = np.random.choice(len(x_vals_train), size=batch_size)

rand_x = x_vals_train[rand_index]

rand_y = np.transpose([y_vals_train[rand_index]])

with tf.GradientTape() as tape:

First logistic layer (7 inputs to 14 hidden nodes)

logistic_layer1 = logistic(x_data, A1, b1)

Second logistic layer (14 hidden inputs to 5 hidden nodes)

logistic_layer2 = logistic(logistic_layer1, A2, b2)

Final output layer (5 hidden nodes to 1 output)

final_output = logistic(logistic_layer2, A3, b3, activation=False)

Declare loss function (Cross Entropy loss)

loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=final_output, labels=y_target))

grads=tape.gradient(loss,[A1,b1,A2,b2,A3,b3])

optimizer.apply_gradients(zip(grads, [A1,b1,A2,b2,A3,b3]))

loss_vec.append(loss)

#A1.assign_sub(learning_rate*grads[0])

#b1.assign_sub(learning_rate*grads[1])

#A2.assign_sub(learning_rate*grads[2])

#b2.assign_sub(learning_rate*grads[3])

#A3.assign_sub(learning_rate*grads[4])

#b3.assign_sub(learning_rate*grads[5])

if (i+1)%150==0:

print('Loss = ' + str(loss.numpy()))

%matplotlib inline

Plot loss over time

plt.plot(loss_vec, 'k-')

plt.title('Cross Entropy Loss per Generation')

plt.xlabel('Generation')

plt.ylabel('Cross Entropy Loss')

plt.show()

相关推荐
汤姆yu1 小时前
基于python的化妆品销售分析系统
开发语言·python·化妆品销售分析
无风听海1 小时前
神经网络之窗口大小对词语义向量的影响
人工智能·深度学习·神经网络
上去我就QWER2 小时前
Python下常用开源库
python·1024程序员节
程序员杰哥3 小时前
Pytest之收集用例规则与运行指定用例
自动化测试·软件测试·python·测试工具·职场和发展·测试用例·pytest
文火冰糖的硅基工坊3 小时前
[人工智能-大模型-83]:模型层技术 - 前向预测:神经网络是如何产生涌现智能的?背后的本质是什么?
人工智能·深度学习·神经网络
Jyywww1214 小时前
Python基于实战练习的知识点回顾
开发语言·python
朝朝辞暮i4 小时前
从0开始学python(day2)
python
程序员黄同学4 小时前
Python中的列表推导式、字典推导式和集合推导式的性能和应用场景?
开发语言·python
AI小云4 小时前
【Python高级编程】类和实例化
开发语言·人工智能·python