用Python实现神经网络(四)

使用多层神经网络

我们展示如何用TensorFlow构建多层神经网络

###低出生率数据 Low Birthrate data:

复制代码
#Columns    Variable                                      Abbreviation
复制代码
#---------------------------------------------------------------------
复制代码
# Low Birth Weight (0 = Birth Weight >= 2500g,            LOW
复制代码
#                          1 = Birth Weight < 2500g)
复制代码
# Age of the Mother in Years                              AGE
复制代码
# Weight in Pounds at the Last Menstrual Period           LWT
复制代码
# Race (1 = White, 2 = Black, 3 = Other)                  RACE
复制代码
# Smoking Status During Pregnancy (1 = Yes, 0 = No)       SMOKE
复制代码
# History of Premature Labor (0 = None  1 = One, etc.)    PTL
复制代码
# History of Hypertension (1 = Yes, 0 = No)               HT
复制代码
# Presence of Uterine Irritability (1 = Yes, 0 = No)      UI
复制代码
# Birth Weight in Grams                                   BWT
复制代码
#---------------------------------------------------------------------

我们要创建的多层神经网络由三个全链接隐藏层组成, 节点数分别为 50, 25, 和 5

import tensorflow as tf

import matplotlib.pyplot as plt

import csv

import os

import os.path

import random

import numpy as np

import random

import requests

from tensorflow.python.framework import ops

name of data file

birth_weight_file = 'birth_weight.csv'

download data and create data file if file does not exist in current directory

if not os.path.exists(birth_weight_file):

birthdata_url = 'https://github.com/nfmcclure/tensorflow_cookbook/raw/master/01_Introduction/07_Working_with_Data_Sources/birthweight_data/birthweight.dat'

birth_file = requests.get(birthdata_url)

birth_data = birth_file.text.split('\r\n')

birth_header = birth_data[0].split('\t')

birth_data = [[float(x) for x in y.split('\t') if len(x)>=1] for y in birth_data[1:] if len(y)>=1]

with open(birth_weight_file, "w") as f:

writer = csv.writer(f)

writer.writerows([birth_header])

writer.writerows(birth_data)

f.close()

read birth weight data into memory

birth_data = []

with open(birth_weight_file, newline='') as csvfile:

csv_reader = csv.reader(csvfile)

birth_header = next(csv_reader)

for row in csv_reader:

birth_data.append(row)

birth_data = [[float(x) for x in row] for row in birth_data]

birth_data

Extract y-target (birth weight)

y_vals = np.array([x[8:9] for x in birth_data])

Filter for features of interest

cols_of_interest = ['AGE', 'LWT', 'RACE', 'SMOKE', 'PTL', 'HT', 'UI']

x_vals = np.array([[x[ix] for ix, feature in enumerate(birth_header) if feature in cols_of_interest] for x in birth_data])

set batch size for training

batch_size = 10

make results reproducible

seed = 3

np.random.seed(seed)

#tf.set_random_seed(seed)

Split data into train/test = 80%/20%

train_indices = np.random.choice(len(x_vals), round(len(x_vals)*0.8), replace=False)

test_indices = np.array(list(set(range(len(x_vals))) - set(train_indices)))

x_vals_train = x_vals[train_indices]

x_vals_test = x_vals[test_indices]

y_vals_train = y_vals[train_indices]

y_vals_test = y_vals[test_indices]

Record training column max and min for scaling of non-training data

train_max = np.max(x_vals_train, axis=0)

train_min = np.min(x_vals_train, axis=0)

Normalize by column (min-max norm to be between 0 and 1)

def normalize_cols(mat, max_vals, min_vals):

return (mat - min_vals) / (max_vals - min_vals)

x_vals_train = np.nan_to_num(normalize_cols(x_vals_train, train_max, train_min))

x_vals_test = np.nan_to_num(normalize_cols(x_vals_test, train_max, train_min))

#定义权重和偏置。

Define Variable Functions (weights and bias)

def init_weight(shape, st_dev):

weight = tf.Variable(tf.random.normal(shape, stddev=st_dev))

return(weight)

def init_bias(shape, st_dev):

bias = tf.Variable(tf.random.normal(shape, stddev=st_dev))

return(bias)

#定义模型!我们先创建一个根据变量生成全链接层的函数。

x_data = tf.Variable(np.random.randn(1,7),dtype=tf.float32)

y_target = tf.Variable(np.random.randn(1,1),dtype=tf.float32)

Create a fully connected layer:

def fully_connected(input_layer, weights, biases):

layer = tf.add(tf.matmul(input_layer, weights), biases)

return(tf.nn.relu(layer))

#我们初始化变量并开始训练循环。

learning_rate=0.001

Training loop

loss_vec = []

test_loss = []

weight_1 = init_weight(shape=[7, 25], st_dev=1.0)

bias_1 = init_bias(shape=[25], st_dev=10.0)

weight_2 = init_weight(shape=[25, 10], st_dev=1.0)

bias_2 = init_bias(shape=[10], st_dev=10.0)

weight_3 = init_weight(shape=[10, 3], st_dev=1.0)

bias_3 = init_bias(shape=[3], st_dev=10.0)

weight_4 = init_weight(shape=[3, 1], st_dev=1.0)

bias_4 = init_bias(shape=[1], st_dev=1.0)

for i in range(3000):

rand_index = np.random.choice(len(x_vals_train), size=batch_size)

rand_x = x_vals_train[rand_index]

rand_y = np.transpose([y_vals_train[rand_index]])

with tf.GradientTape() as tape:

#--------Create the first layer (50 hidden nodes)--------

layer_1 = fully_connected(x_data, weight_1, bias_1)

#--------Create second layer (25 hidden nodes)--------

layer_2 = fully_connected(layer_1, weight_2, bias_2)

#--------Create third layer (5 hidden nodes)--------

layer_3 = fully_connected(layer_2, weight_3, bias_3)

#--------Create output layer (1 output value)--------

final_output = fully_connected(layer_3, weight_4, bias_4)

Declare loss function (L1)

loss = tf.reduce_mean(tf.abs(y_target - final_output))

grads=tape.gradient(loss,[weight_1,bias_1,weight_2,bias_2,weight_3,bias_3,weight_4,bias_4])

loss_vec.append(loss)

weight_1.assign_sub(learning_rate*grads[0])

bias_1.assign_sub(learning_rate*grads[1])

weight_2.assign_sub(learning_rate*grads[2])

bias_2.assign_sub(learning_rate*grads[3])

weight_3.assign_sub(learning_rate*grads[4])

bias_3.assign_sub(learning_rate*grads[5])

weight_4.assign_sub(learning_rate*grads[6])

bias_4.assign_sub(learning_rate*grads[7])

#test_loss.append(test_temp_loss)

if (i+1) % 25 == 0:

print('Generation: ' + str(i+1) + '. Loss = ' + str(loss.numpy()))

#绘制损失函数。

%matplotlib inline

Plot loss (MSE) over time

plt.plot(loss_vec, 'k-', label='Train Loss')

#plt.plot(test_loss, 'r--', label='Test Loss')

plt.title('Loss (MSE) per Generation')

plt.legend(loc='upper right')

plt.xlabel('Generation')

plt.ylabel('Loss')

plt.show()

Create variable definition

def init_variable(shape):

return(tf.Variable(tf.random.normal(shape=shape)))

Create a logistic layer definition

def logistic(input_layer, multiplication_weight, bias_weight, activation = True):

linear_layer = tf.add(tf.matmul(input_layer, multiplication_weight), bias_weight)

We separate the activation at the end because the loss function will

implement the last sigmoid necessary

if activation:

return(tf.nn.sigmoid(linear_layer))

else:

return(linear_layer)

Declare optimizer

#my_opt = tf.train.AdamOptimizer(learning_rate = 0.002)

#train_step = my_opt.minimize(loss)

Actual Prediction

A1 = init_variable(shape=[7,14])

b1 = init_variable(shape=[14])

A2 = init_variable(shape=[14,5])

b2 = init_variable(shape=[5])

A3 = init_variable(shape=[5,1])

b3 = init_variable(shape=[1])

optimizer = tf.optimizers.SGD(learning_rate)

Training loop

loss_vec = []

train_acc = []

test_acc = []

for i in range(3000):

rand_index = np.random.choice(len(x_vals_train), size=batch_size)

rand_x = x_vals_train[rand_index]

rand_y = np.transpose([y_vals_train[rand_index]])

with tf.GradientTape() as tape:

First logistic layer (7 inputs to 14 hidden nodes)

logistic_layer1 = logistic(x_data, A1, b1)

Second logistic layer (14 hidden inputs to 5 hidden nodes)

logistic_layer2 = logistic(logistic_layer1, A2, b2)

Final output layer (5 hidden nodes to 1 output)

final_output = logistic(logistic_layer2, A3, b3, activation=False)

Declare loss function (Cross Entropy loss)

loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=final_output, labels=y_target))

grads=tape.gradient(loss,[A1,b1,A2,b2,A3,b3])

optimizer.apply_gradients(zip(grads, [A1,b1,A2,b2,A3,b3]))

loss_vec.append(loss)

#A1.assign_sub(learning_rate*grads[0])

#b1.assign_sub(learning_rate*grads[1])

#A2.assign_sub(learning_rate*grads[2])

#b2.assign_sub(learning_rate*grads[3])

#A3.assign_sub(learning_rate*grads[4])

#b3.assign_sub(learning_rate*grads[5])

if (i+1)%150==0:

print('Loss = ' + str(loss.numpy()))

%matplotlib inline

Plot loss over time

plt.plot(loss_vec, 'k-')

plt.title('Cross Entropy Loss per Generation')

plt.xlabel('Generation')

plt.ylabel('Cross Entropy Loss')

plt.show()

相关推荐
橡晟34 分钟前
4.循环结构:让电脑做重复的事情
人工智能·python·深度学习·机器学习
amazinging4 小时前
北京-4年功能测试2年空窗-报培训班学测开-第五十四天
python·学习·面试
java1234_小锋5 小时前
【NLP舆情分析】基于python微博舆情分析可视化系统(flask+pandas+echarts) 视频教程 - 微博类别信息爬取
开发语言·python·flask
BTU_YC7 小时前
Neo4j Python 驱动库完整教程(带输入输出示例)
开发语言·python·neo4j
曾几何时`7 小时前
分别使用Cypher与python构建neo4j图谱
开发语言·python·机器学习
咖啡星人k7 小时前
PandaWiki与GitBook深度对比:AI时代的知识管理工具,选谁好?
人工智能·深度学习·神经网络
往日情怀酿做酒 V17639296387 小时前
深度学习和神经网络的介绍
人工智能·深度学习·神经网络
007php0078 小时前
使用LNMP一键安装包安装PHP、Nginx、Redis、Swoole、OPcache
java·开发语言·redis·python·nginx·php·swoole