快速上手
下面这个代码就是一个选主的大概逻辑
go
package main
import (
"context"
"flag"
"fmt"
_ "net/http/pprof"
"os"
"path/filepath"
"time"
"golang.org/x/exp/rand"
v1 "k8s.io/api/core/v1"
metav1 "k8s.io/apimachinery/pkg/apis/meta/v1"
"k8s.io/apimachinery/pkg/util/uuid"
"k8s.io/client-go/kubernetes"
"k8s.io/client-go/kubernetes/scheme"
corev1 "k8s.io/client-go/kubernetes/typed/core/v1"
"k8s.io/client-go/tools/clientcmd"
"k8s.io/client-go/tools/leaderelection"
"k8s.io/client-go/tools/leaderelection/resourcelock"
"k8s.io/client-go/tools/record"
"k8s.io/client-go/util/homedir"
)
func main() {
ctx := context.Background()
var kubeconfig *string
if home := homedir.HomeDir(); home != "" {
kubeconfig = flag.String("kubeconfig", filepath.Join(home, ".kube", "config"), "")
}
config, err := clientcmd.BuildConfigFromFlags("", *kubeconfig)
if err != nil {
panic(err)
}
clientset, err := kubernetes.NewForConfig(config)
if err != nil {
panic(err)
}
broadcaster := record.NewBroadcaster()
broadcaster.StartRecordingToSink(&corev1.EventSinkImpl{
Interface: clientset.CoreV1().Events("default"),
})
eventRecorder := broadcaster.NewRecorder(scheme.Scheme,
v1.EventSource{Component: "hello-word"})
createIdentity := func() string {
hostname, err := os.Hostname()
if err != nil {
hostname = fmt.Sprintf("rand%d", rand.Intn(10000))
}
return fmt.Sprintf("%s_%s", hostname, string(uuid.NewUUID()))
}
lock := &resourcelock.LeaseLock{
LeaseMeta: metav1.ObjectMeta{
Namespace: "default",
Name: "hello-world",
},
Client: clientset.CoordinationV1(),
LockConfig: resourcelock.ResourceLockConfig{
Identity: createIdentity(),
EventRecorder: eventRecorder,
},
}
leaderelection.RunOrDie(ctx, leaderelection.LeaderElectionConfig{
Lock: lock,
LeaseDuration: 5 * time.Second,
RenewDeadline: 4 * time.Second,
RetryPeriod: 2 * time.Second,
Callbacks: leaderelection.LeaderCallbacks{
OnStartedLeading: func(ctx context.Context) {
fmt.Println("start leading")
},
OnStoppedLeading: func() {
fmt.Println("stop leading")
},
OnNewLeader: func(identity string) {
fmt.Printf("new leader: %s\n", identity)
},
},
Coordinated: false,
})
}
我们同时启动多个终端来运行这个程序,并且杀掉主节点来模拟节点挂掉,观察是否会重新进行选举出新的master

从图中可以看到,第一个程序选为主节点之后,第二三个程序自动成为slave,我们 kill 掉第一 个程序之后,第二个程序抢到了锁成为了 master
租约 Lease
k8s 内置很多种资源,其中 lease 也是k8s的一种资源,顾名思义表达的是租户对某种资源的
占有的信息表示
bash
➜ ~ k get lease -A
NAMESPACE NAME HOLDER AGE
default hello-world VM-221-245-tencentos_bada2219-3a27-4b19-8b80-23fc05604391 6d7h
kube-node-lease vm-221-245-tencentos vm-221-245-tencentos 36d
kube-system kube-controller-manager VM-221-245-tencentos_8f5a4f85-ca0c-4b5f-ac81-8b0ff5ff2e49 36d
kube-system kube-scheduler VM-221-245-tencentos_4fab96c4-156b-4a77-b862-87224be44cb2 36d
比如我们查看一个 k8s 的 node 的 lease
bash
➜ ~ k get lease vm-221-245-tencentos -n kube-node-lease -oyaml
apiVersion: coordination.k8s.io/v1
kind: Lease # 资源的种类
metadata:
creationTimestamp: "2024-09-27T12:24:07Z" # 这个资源的创建时间戳
name: vm-221-245-tencentos # 名称
namespace: kube-node-lease # 命名空间
ownerReferences:
- apiVersion: v1
kind: Node
name: vm-221-245-tencentos # 这个资源的占有名称
uid: 5df61ad6-cc1a-4669-8b0e-d48a5b0ffb91
resourceVersion: "3811080"
uid: 411c6d4e-5afb-4eba-a1a0-8a56d00b75db
spec:
holderIdentity: vm-221-245-tencentos
leaseDurationSeconds: 40 # 租约的时常40s
renewTime: "2024-11-03T01:35:05.171458Z" # 租约的更新时间
而实际上 leader 选举中的资源 lock 其实就是一种 lease,表明 master 主节点持有对某个资源
的唯一性
查看 github.com/kubernetes/... 的源文件
可以看到 leaderElection 的目录结构,主要分为 resourcelock 和 leaderelection 的主文件,
文件内容不是很多
bash
➜ leaderelection git:(master) tree jinchaozhu@VM-221-245-tencentos leaderelection %
.
├── healthzadaptor.go
├── healthzadaptor_test.go
├── leaderelection.go
├── leaderelection_test.go
├── leasecandidate.go
├── leasecandidate_test.go
├── metrics.go
├── OWNERS
└── resourcelock
├── interface.go
├── leaselock.go
└── multilock.go
数据结构
存储 Lease 相关的信息
go
// LeaderElectionRecord is the record that is stored in the leader election annotation.
// This information should be used for observational purposes only and could be replaced
// with a random string (e.g. UUID) with only slight modification of this code.
// TODO(mikedanese): this should potentially be versioned
type LeaderElectionRecord struct {
// leader的标识
HolderIdentity string `json:"holderIdentity"`
// 选举间隔
LeaseDurationSeconds int `json:"leaseDurationSeconds"`
// 选举成为leader的时间
AcquireTime metav1.Time `json:"acquireTime"`
// 续任时间
RenewTime metav1.Time `json:"renewTime"`
// leader位置的转让次数
LeaderTransitions int `json:"leaderTransitions"`
// 选举策略
Strategy v1.CoordinatedLeaseStrategy `json:"strategy"`
PreferredHolder string `json:"preferredHolder"`
}
Elector 相关的配置文件
go
type LeaderElectionConfig struct {
// 锁,用来保证时序竞态
Lock rl.Interface
// 非leader候选者尝试获取leadership的间隔时间
// Core clients default this value to 15 seconds.
LeaseDuration time.Duration
// leade 放弃leadership角色之前的确认时间
// Core clients default this value to 10 seconds.
RenewDeadline time.Duration
// 候选者应该获取leader角色的重试时间
// Core clients default this value to 2 seconds.
RetryPeriod time.Duration
// 回掉函数
// 比如开始leader选举触发什么、成为leader触发什么、放弃leader触发什么
Callbacks LeaderCallbacks
// WatchDog is the associated health checker
// WatchDog may be null if it's not needed/configured.
WatchDog *HealthzAdaptor
// ReleaseOnCancel should be set true if the lock should be released
// when the run context is cancelled. If you set this to true, you must
// ensure all code guarded by this lease has successfully completed
// prior to cancelling the context, or you may have two processes
// simultaneously acting on the critical path.
ReleaseOnCancel bool
// Name is the name of the resource lock for debugging
Name string
// Coordinated will use the Coordinated Leader Election feature
// WARNING: Coordinated leader election is ALPHA.
Coordinated bool
}
主要逻辑
选举的逻辑大概如下:
- 刚开始实例启动的时候,各个实例都是一个 LeaderElector 的角色,最先开始选举的就成
为 leader;成为 leader 之后便会维护一个 LeaseLock 供每个 LeaderElector 进行访问查询
- 其余的 LeaderElector 进入候选状态,hang 住监控 leader 的状态,必要时异常会再次参与选举
- Leader 获取到 Leadership 之后会持续性的刷新自己的 leader 状态
go
func (le *LeaderElector) Run(ctx context.Context) {
defer runtime.HandleCrash()
defer le.config.Callbacks.OnStoppedLeading() // StoppedLeading 函数每个节点都会执行
// 未获得leadership的节点这里就会返回
// acquire 就是各个节点来争抢 leadership
if !le.acquire(ctx) {
return // ctx signalled done
}
ctx, cancel := context.WithCancel(ctx)
defer cancel()
// 这里只有获取到leadership的角色的节点才会执行 StartedLeading
go le.config.Callbacks.OnStartedLeading(ctx)
// 获取到 leadership 之后不停的刷新当前的状态信息
le.renew(ctx)
}
func (le *LeaderElector) acquire(ctx context.Context) bool {
...
klog.Infof("attempting to acquire leader lease %v...", desc)
wait.JitterUntil(func() {
if !le.config.Coordinated {
succeeded = le.tryAcquireOrRenew(ctx) // 尝试竞争
} else {
succeeded = le.tryCoordinatedRenew(ctx)
}
....
klog.Infof("successfully acquired lease %v", desc)
cancel()
.....
}, le.config.RetryPeriod, JitterFactor, true, ctx.Done())
return succeeded
}
核心逻辑 tryAcquireOrRenew
go
// tryAcquireOrRenew tries to acquire a leader lease if it is not already acquired,
// else it tries to renew the lease if it has already been acquired. Returns true
// on success else returns false.
func (le *LeaderElector) tryAcquireOrRenew(ctx context.Context) bool {
now := metav1.NewTime(le.clock.Now())
leaderElectionRecord := rl.LeaderElectionRecord{
// 这里 identity 为当前竞选者的标识
HolderIdentity: le.config.Lock.Identity(),
LeaseDurationSeconds: int(le.config.LeaseDuration / time.Second),
RenewTime: now,
AcquireTime: now,
}
// 1.判断是否是Leader,如果是Leader并且Lease有效,则进行 Lock 的信息更新
if le.IsLeader() && le.isLeaseValid(now.Time) {
oldObservedRecord := le.getObservedRecord()
leaderElectionRecord.AcquireTime = oldObservedRecord.AcquireTime
leaderElectionRecord.LeaderTransitions = oldObservedRecord.LeaderTransitions
err := le.config.Lock.Update(ctx, leaderElectionRecord)
........
}
// 2.不是Leader,则进行锁的获取
oldLeaderElectionRecord, oldLeaderElectionRawRecord, err := le.config.Lock.Get(ctx)
if err != nil {
........
}
// 3.对比检查是否 Elctection 的 Record 信息
// 需要更新则刷新本地的缓存信息
if !bytes.Equal(le.observedRawRecord, oldLeaderElectionRawRecord) {
le.setObservedRecord(oldLeaderElectionRecord)
le.observedRawRecord = oldLeaderElectionRawRecord
}
if len(oldLeaderElectionRecord.HolderIdentity) > 0 && le.isLeaseValid(now.Time) && !le.IsLeader() {
klog.V(4).Infof("lock is held by %v and has not yet expired", oldLeaderElectionRecord.HolderIdentity)
return false
}
// 4. 按照是否Leader判断是否进行更新 ElectionRecord
if le.IsLeader() {
leaderElectionRecord.AcquireTime = oldLeaderElectionRecord.AcquireTime
leaderElectionRecord.LeaderTransitions = oldLeaderElectionRecord.LeaderTransitions
le.metrics.slowpathExercised(le.config.Name)
} else {
leaderElectionRecord.LeaderTransitions = oldLeaderElectionRecord.LeaderTransitions + 1
}
// 5.更新锁本身的信息
if err = le.config.Lock.Update(ctx, leaderElectionRecord); err != nil {
klog.Errorf("Failed to update lock: %v", err)
return false
}
// 更新锁成功则说明当前节点持有锁:抢锁成功/续期成功
le.setObservedRecord(&leaderElectionRecord)
return true
}
上面的 Lock 其实是自实现的一种 LeaseLock
go
// Interface offers a common interface for locking on arbitrary
// resources used in leader election. The Interface is used
// to hide the details on specific implementations in order to allow
// them to change over time. This interface is strictly for use
// by the leaderelection code.
type Interface interface {
// Get returns the LeaderElectionRecord
Get(ctx context.Context) (*LeaderElectionRecord, []byte, error)
// Create attempts to create a LeaderElectionRecord
Create(ctx context.Context, ler LeaderElectionRecord) error
// Update will update and existing LeaderElectionRecord
Update(ctx context.Context, ler LeaderElectionRecord) error
.....
}
// Get returns the election record from a Lease spec
func (ll *LeaseLock) Get(ctx context.Context) (*LeaderElectionRecord, []byte, error) {
lease, err := ll.Client.Leases(ll.LeaseMeta.Namespace).Get(ctx, ll.LeaseMeta.Name, metav1.GetOptions{})
if err != nil {
return nil, nil, err
}
ll.lease = lease
record := LeaseSpecToLeaderElectionRecord(&ll.lease.Spec)
recordByte, err := json.Marshal(*record)
if err != nil {
return nil, nil, err
}
return record, recordByte, nil
}
// Create attempts to create a Lease
func (ll *LeaseLock) Create(ctx context.Context, ler LeaderElectionRecord) error {
var err error
ll.lease, err = ll.Client.Leases(ll.LeaseMeta.Namespace).Create(ctx, &coordinationv1.Lease{
ObjectMeta: metav1.ObjectMeta{
Name: ll.LeaseMeta.Name,
Namespace: ll.LeaseMeta.Namespace,
},
Spec: LeaderElectionRecordToLeaseSpec(&ler),
}, metav1.CreateOptions{})
return err
}
怎么判断当前leader是持有租约的呢?
go
func (le *LeaderElector) isLeaseValid(now time.Time) bool {
return le.observedTime.Add(time.Second * time.Duration(le.getObservedRecord().LeaseDurationSeconds)).After(now)
}
其实就是判断上次观察到的时间与当前之间的差是否在 LeaseDurationSeconds 的范围内,在
范围内就代表是有效的
那这个选主的主到底是怎么判断的呢?
我们查看下面的判断逻辑
go
// IsLeader returns true if the last observed leader was this client else returns false.
func (le *LeaderElector) IsLeader() bool {
return le.getObservedRecord().HolderIdentity == le.config.Lock.Identity()
}
其实就是拿当前的 ElectionRecord 和每个实例启动时的配置文件里面的 Identity 来进行比较
判断是否一致即可
而这个 ObservedRecord 的信息是从 k8s 里面进行获取的,这就保证了唯一性
Identity 是每个实例启动的唯一标识,这个字段千万不能重复,否则选举一定失败,报错如下
bash
E1103 15:44:21.019391 3024650 leaderelection.go:429] Failed to update lock optimitically: Operation cannot be fulfilled on leases.coordination.k8s.io "hello-world": the object has been modified; please apply your changes to the latest version and try again, falling back to slow path