P5357 【模板】AC 自动机 - 洛谷
主要是构建fail树
/*
我们可以知道的是,当访问一个点x时,接下来需要跳转其fail[x],以此类推,如果在某个fail[x]上出现了一个字符串,那么相应的统计次数应该加1,然后当访问到fail[x]时,又要继续访问fail[fail[x]]造成了一个点多次访问的情况
那么我们可以看出如果我们访问到了一个点x,那么接下来他的fail点都会继续访问到,那么我们其实可以构造一个fail树,当匹配主串的时候仅让siz[u]++,而不跳转他的fail[u],然后再遍历完主串的时候我们得到了每个点访问的次数,构建fail树,根据树的特性遍历求出哪些点访问过了多少次,这样就能把时间控制在O(S + T + n)内,S是模式串的总长度,T是主串长度,n是模式串个数
*/
cpp
#include<bits/stdc++.h>
using namespace std;
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
#define IOS ios::sync_with_stdio(0); cin.tie(0); cout.tie(0);
#define lowbit(x) (x & (-x))
#define int long long
#define rep(l, r) for(int i = l; i <= r; i++)
#define pb push_back
typedef pair<int, int> PII;
typedef pair<double, double> PDD;
typedef pair<int, double> PID;
typedef tuple<int, int, int> TUP;
const int N = 1e6 + 10, INF = 0x3f3f3f3f;
int n;
int cnt[N], ne[N], ch[N][30], idx;
string s[N], t;
int match[N]; // 统计第几个字符串出现在哪个idx上
int siz[N]; // 每个点访问过的次数
vector<int> vec[N]; // 构建fail树
void insert(string x, int id)
{
int p = 0;
rep(0, x.size() - 1)
{
int j = x[i] - 'a';
if(!ch[p][j]) ch[p][j] = ++idx;
p = ch[p][j];
}
cnt[p]++;
match[id] = p;
}
void built()
{
queue<int> q;
rep(0, 25)
if(ch[0][i])
q.push(ch[0][i]);
while(!q.empty())
{
auto u = q.front();
q.pop();
for(int i = 0; i <= 25; i++)
{
int v = ch[u][i];
if(v) ne[v] = ch[ne[u]][i], q.push(v);
else
ch[u][i] = ch[ne[u]][i];
}
}
}
void dfs(int u)
{
for(auto it : vec[u])
{
dfs(it);
siz[u] += siz[it];
}
}
void query(string x)
{
for (int k = 0, i = 0; k < x.size(); k++)
{
i = ch[i][x[k] - 'a'];
++siz[i];
}
rep(1, idx)
vec[ne[i]].pb(i);
dfs(0);
rep(1, n)
cout << siz[match[i]] << '\n';
}
void solve()
{
cin >> n;
rep(1, n)
{
cin >> s[i];
insert(s[i], i);
}
built();
cin >> t;
query(t);
}
signed main()
{
IOS;
int T = 1;
// cin >> T;
while(T --)
solve();
return 0;
}
https://codeforces.com/problemset/problem/2109/B
cpp
#include<bits/stdc++.h>
using namespace std;
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
#define IOS ios::sync_with_stdio(0); cin.tie(0); cout.tie(0);
#define lowbit(x) (x & (-x))
#define int long long
#define rep(l, r) for(int i = l; i <= r; i++)
#define pb push_back
typedef pair<int, int> PII;
typedef pair<double, double> PDD;
typedef pair<int, double> PID;
typedef tuple<int, int, int> TUP;
const int N = 2e5 + 10, INF = 0x3f3f3f3f;
int n, m, a, b;
void solve()
{
cin >> n >> m >> a >> b;
if(n == 2 && m == 2)
{
cout << 2 << '\n';
return;
}
int t1 = ceil(log2(n)), t2 = ceil(log2(m));
int c1 = ceil(log2(min(a, n - a + 1))), c2 = ceil(log2(min(b, m - b + 1)));
cout << min(t1 + c2, c1 + t2) + 1 << '\n';
}
signed main()
{
IOS;
int T = 1;
cin >> T;
while(T --)
solve();
return 0;
}
https://codeforces.com/problemset/problem/2108/B
cpp
#include<bits/stdc++.h>
using namespace std;
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
#define IOS ios::sync_with_stdio(0); cin.tie(0); cout.tie(0);
#define lowbit(x) (x & (-x))
#define int long long
#define rep(l, r) for(int i = l; i <= r; i++)
#define pb push_back
typedef pair<int, int> PII;
typedef pair<double, double> PDD;
typedef pair<int, double> PID;
typedef tuple<int, int, int> TUP;
const int N = 2e5 + 10, INF = 0x3f3f3f3f;
int n, x;
void solve()
{
cin >> n >> x;
int cnt = 0;
int tx = x;
if(n == 1 && x == 0)
{
cout << -1 << '\n';
return;
}
while(tx)
{
if(tx & 1) cnt++;
tx /= 2;
}
if(n <= cnt)
{
cout << x << '\n';
return;
}
else
{
if((n - cnt) % 2 == 0)
cout << x + (n - cnt) << '\n';
else
{
if(x > 1) cout << x + (n - cnt) + 1 << '\n';
else
cout << n + 3 << '\n';
}
}
}
signed main()
{
IOS;
int T = 1;
cin >> T;
while(T --)
solve();
return 0;
}
Contest Login
cpp
#include<bits/stdc++.h>
using namespace std;
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
#define IOS ios::sync_with_stdio(0); cin.tie(0); cout.tie(0);
#define lowbit(x) (x & (-x))
#define int long long
#define rep(l, r) for(int i = l; i <= r; i++)
#define pb push_back
typedef pair<int, int> PII;
typedef pair<double, double> PDD;
typedef pair<int, double> PID;
typedef tuple<int, int, int> TUP;
const int N = 2e5 + 10, INF = 0x3f3f3f3f;
int n, x, y;
int count(int a)
{
int ans = 0;
while(a)
{
if(a & 1) ans ++;
a /= 2;
}
return ans;
}
void solve()
{
cin >> n >> x >> y;
if(x == y)
{
cout << 0 << '\n';
return;
}
if(count(x) == count(y) || lowbit(x) == lowbit(y))
{
cout << 1 << "\n";
return;
}
cout << 2 << '\n';
}
signed main()
{
IOS;
int T = 1;
cin >> T;
while(T --)
solve();
return 0;
}
Contest Login
cpp
#include<bits/stdc++.h>
using namespace std;
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
#define IOS ios::sync_with_stdio(0); cin.tie(0); cout.tie(0);
#define lowbit(x) (x & (-x))
#define int long long
#define rep(l, r) for(int i = l; i <= r; i++)
#define pb push_back
typedef pair<int, int> PII;
typedef pair<double, double> PDD;
typedef pair<int, double> PID;
typedef tuple<int, int, int> TUP;
const int N = 2e5 + 10, INF = 0x3f3f3f3f;
void solve()
{
int n;
scanf("%d", &n);
printf("%.4f\n", 1.0 * 3 * n / 2);
}
signed main()
{
// IOS;
int T = 1;
cin >> T;
while(T --)
solve();
return 0;
}
二维偏序问题
Contest Login
/*
题目的意思就是对于一个数在a[]数组中的位置为i,在b[]数组中的位置为j,那么我们的结果就是(i - 1) + (j - 1) + 前面重复的部分
主要就是重复的部分怎么求呢?如果有重复的部分,那么是不是一个数x在a[]和b[]中的下标分别小于i, j。这就是一个典型的二维偏序问题。经典的做法就是树状数组
我们对于a[]原封不动,对于b[]数组,记录下b[]元素所在b[]数组中的位置。我们开始遍历a[]数组,得到a[]数组的(i - 1) + (j - 1)这个值。根据遍历a[]数组的顺序就可以知道,a[]数组后面的元素所要加的值肯定有a[]数组前面的元素,那么我们在把a[i]在b[]数组中出现的位置用BIT统计上,这样如果我们访问a[]的下一个元素的时候,如果这个元素在b[]中的位置在j之后,那么因为我们刚才更新了BIT就能直接通过BIT减去重复的,如果在j之前的话,那么就没有影响。。。以此类推
*/
cpp
#include<bits/stdc++.h>
using namespace std;
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
#define IOS ios::sync_with_stdio(0); cin.tie(0); cout.tie(0);
#define lowbit(x) (x & (-x))
#define int long long
#define rep(l, r) for(int i = l; i <= r; i++)
#define pb push_back
typedef pair<int, int> PII;
typedef pair<double, double> PDD;
typedef pair<int, double> PID;
typedef tuple<int, int, int> TUP;
const int N = 1e6 + 10, INF = 0x3f3f3f3f;
int n;
int a[N], b[N], p[N], ans[N];
struct BIT
{
int s[N];
BIT()
{
init();
}
void init()
{
memset(s, 0, sizeof s);
}
void update(int poi, int val)
{
for (int i = poi; i <= n; i += lowbit(i))
s[i] += val;
}
int query(int poi)
{
int ans = 0;
for (int i = poi; i > 0; i -= lowbit(i))
ans += s[i];
return ans;
}
};
BIT bit;
void solve()
{
cin >> n;
bit.init();
rep(1, n) cin >> a[i];
rep(1, n)
{
cin >> b[i];
p[b[i]] = i;
}
rep(1, n)
{
int res = (i - 1) + (p[a[i]] - 1);
res -= bit.query(p[a[i]]);
// cout << ans << " \n"[i == n];
ans[a[i]] = res;
bit.update(p[a[i]], 1);
}
rep(1, n) cout << ans[i] << " \n"[i == n];
}
signed main()
{
IOS;
int T = 1;
cin >> T;
while(T --)
solve();
return 0;
}
P2163 [SHOI2007] 园丁的烦恼 - 洛谷
核心思想就是因为我们统计的是每一个矩形框内的点的个数,那么难免会用到二维前缀和,但是有时候我们的二维前缀和的数组需要开太大题目不支持。我们在计算二维前缀和的时候会用到一个公式,那么我们就就可以根据扫描线的原理,先将所有的点按照x从大到小的顺序排序,然后将满足x条件的点全加进BIT中,但是加进来的是这个点的纵坐标,然后因为我们将访问一个矩阵变成了4个矩阵的而访问和,那么我们在对每一个访问矩阵的操作的时候就可以直接计算满足其y的点的个数,本质还是通过BIT的离线处理
cpp
#include<bits/stdc++.h>
using namespace std;
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
#define IOS ios::sync_with_stdio(0); cin.tie(0); cout.tie(0);
#define lowbit(x) (x & (-x))
#define int long long
#define rep(l, r) for(int i = l; i <= r; i++)
#define pb push_back
typedef pair<int, int> PII;
typedef pair<double, double> PDD;
typedef pair<int, double> PID;
typedef tuple<int, int, int, int> TUP;
const int N = 1e7 + 5, INF = 0x3f3f3f3f;
int n, m;
struct BIT
{
int s[N];
BIT()
{
init();
}
void init()
{
memset(s, 0, sizeof s);
}
void update(int poi, int val)
{
for (int i = poi; i < N; i += lowbit(i))
s[i] += val;
}
int query(int poi)
{
int ans = 0;
for (int i = poi; i > 0; i -= lowbit(i))
ans += s[i];
return ans;
}
} bit;
vector<PII> vec;
vector<TUP> qu;
int ans[(int)5e5 + 10];
void solve()
{
cin >> n >> m;
rep(1, n)
{
int a, b;
cin >> a >> b;
++a, ++b;
vec.pb({a, b});
}
rep(1, m)
{
int x1, x2, y1, y2;
cin >> x1 >> y1 >> x2 >> y2;
++x1, ++y1, ++x2, ++y2;
qu.pb({x2, y2, 1, i});
qu.pb({x1 - 1, y2, -1, i});
qu.pb({x2, y1 - 1, -1, i});
qu.pb({x1 - 1, y1 - 1, 1, i});
}
sort(vec.begin(), vec.end());
sort(qu.begin(), qu.end());
int cur = 0;
for(auto [x, y, c, id] : qu)
{
while(cur < n && vec[cur].first <= x)
bit.update(vec[cur].second, 1), cur++;
ans[id] += bit.query(y) * c;
}
rep(1, m) cout << ans[i] << '\n';
}
signed main()
{
IOS;
int T = 1;
// cin >> T;
while(T --)
solve();
return 0;
}
P3755 [CQOI2017] 老C的任务 - 洛谷
加了离散化的,就是关键是一定要注意树状数组的大小问题。
cpp
#include<bits/stdc++.h>
using namespace std;
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
#define IOS ios::sync_with_stdio(0); cin.tie(0); cout.tie(0);
#define lowbit(x) (x & (-x))
#define int long long
#define rep(l, r) for(int i = l; i <= r; i++)
#define pb push_back
typedef pair<int, int> PII;
typedef pair<double, double> PDD;
typedef pair<int, double> PID;
typedef tuple<int, int, int, int> TUP;
const int N = 1e5 + 10, INF = 0x3f3f3f3f;
int n, m;
int maxlen;
vector<array<int, 3>> vec;
vector<TUP> que;
vector<int> vy;
map<int, int> mp;
int ans[N];
struct BIT
{
int s[N * 10];
BIT()
{
init();
}
void init()
{
memset(s, 0, sizeof s);
}
void update(int poi, int val)
{
for (int i = poi; i <= maxlen; i += lowbit(i))
s[i] += val;
}
int query(int poi)
{
int ans = 0;
for (int i = poi; i > 0; i -= lowbit(i))
ans += s[i];
return ans;
}
} bit;
void solve()
{
cin >> n >> m;
rep(1, n)
{
int a, b, c;
cin >> a >> b >> c;
vec.pb({a, b, c});
vy.pb(b);
}
rep(1, m)
{
int x1, x2, y1, y2;
cin >> x1 >> y1 >> x2 >> y2;
que.pb({x1 - 1, y1 - 1, 1, i});
que.pb({x2, y2, 1, i});
que.pb({x1 - 1, y2, -1, i});
que.pb({x2, y1 - 1, -1, i});
vy.pb(y2), vy.pb(y1 - 1);
}
sort(vec.begin(), vec.end());
sort(vy.begin(), vy.end());
sort(que.begin(), que.end());
vy.erase(unique(vy.begin(), vy.end()), vy.end());
maxlen = vy.size();
rep(0, vy.size() - 1)
mp[vy[i]] = i + 1;
int cur = 0;
for(auto [x, y, c, id] : que)
{
while(cur < n && vec[cur][0] <= x)
{
bit.update(mp[vec[cur][1]], vec[cur][2]);
cur++;
}
ans[id] += c * bit.query(mp[y]);
}
rep(1, m) cout << ans[i] << '\n';
}
signed main()
{
IOS;
int T = 1;
// cin >> T;
while(T --)
solve();
return 0;
}