一、复合查询基础概念
1.1 什么是复合查询
复合查询是指将多个简单查询通过特定的SQL语法组合起来,形成一个功能更加强大的查询语句。与简单查询相比,复合查询能够:
- 处理更复杂的数据关系
- 减少应用程序中的数据处理逻辑
- 提高数据检索效率(当正确使用时)
- 实现跨表的数据关联和分析
1.2 复合查询的主要类型
MySQL中常见的复合查询包括:
- 子查询(Subqueries)
- 连接查询(JOIN Operations)
- 联合查询(UNION Queries)
- 派生表(Derived Tables)
- 公用表表达式(Common Table Expressions,CTE)
二、示例数据库结构详解
在进行讲解我们的查询之前,我们先看一下名为需要用到的表,以及往表里添加几组示例数据,以方便我们查询后看到查询的效果
2.1 完整的表结构设计
sql
-- 部门表
CREATE TABLE departments (
dept_id INT PRIMARY KEY AUTO_INCREMENT,
dept_name VARCHAR(50) NOT NULL,
location VARCHAR(50) NOT NULL,
established_date DATE,
budget DECIMAL(12,2)
);
-- 员工表
CREATE TABLE employees (
emp_id INT PRIMARY KEY AUTO_INCREMENT,
emp_name VARCHAR(50) NOT NULL,
dept_id INT,
salary DECIMAL(10,2) NOT NULL,
hire_date DATE NOT NULL,
manager_id INT,
email VARCHAR(100),
CONSTRAINT fk_dept FOREIGN KEY (dept_id) REFERENCES departments(dept_id),
CONSTRAINT fk_manager FOREIGN KEY (manager_id) REFERENCES employees(emp_id)
);
-- 项目表
CREATE TABLE projects (
project_id INT PRIMARY KEY AUTO_INCREMENT,
project_name VARCHAR(100) NOT NULL,
budget DECIMAL(12,2),
start_date DATE,
end_date DATE,
dept_id INT,
status ENUM('Planning', 'In Progress', 'Completed', 'On Hold') DEFAULT 'Planning',
CONSTRAINT fk_project_dept FOREIGN KEY (dept_id) REFERENCES departments(dept_id)
);
-- 员工项目关联表
CREATE TABLE emp_projects (
emp_id INT,
project_id INT,
role VARCHAR(50),
join_date DATE,
hours_allocated INT,
PRIMARY KEY (emp_id, project_id),
CONSTRAINT fk_emp FOREIGN KEY (emp_id) REFERENCES employees(emp_id),
CONSTRAINT fk_project FOREIGN KEY (project_id) REFERENCES projects(project_id)
);
AI写代码sql
2.2 示例数据填充
sql
-- 部门数据
INSERT INTO departments VALUES
(1, '技术研发部', '北京总部', '2015-06-01', 2000000.00),
(2, '市场营销部', '上海分公司', '2016-03-15', 1500000.00),
(3, '人力资源部', '广州办事处', '2017-01-10', 800000.00),
(4, '财务部', '北京总部', '2015-06-01', 1200000.00);
-- 员工数据
INSERT INTO employees VALUES
(1, '张伟', 1, 25000.00, '2016-03-10', NULL, 'zhangwei@company.com'),
(2, '李娜', 1, 18000.00, '2017-05-15', 1, 'lina@company.com'),
(3, '王芳', 2, 22000.00, '2016-11-20', NULL, 'wangfang@company.com'),
(4, '赵刚', 2, 16000.00, '2018-02-28', 3, 'zhaogang@company.com'),
(5, '钱强', 3, 19000.00, '2017-08-05', NULL, 'qianqiang@company.com'),
(6, '孙丽', 3, 14000.00, '2019-06-15', 5, 'sunli@company.com'),
(7, '周明', 4, 21000.00, '2016-07-22', NULL, 'zhouming@company.com');
-- 项目数据
INSERT INTO projects VALUES
(1, '新一代电商平台开发', 800000.00, '2023-01-10', '2023-09-30', 1, 'In Progress'),
(2, '全球市场推广计划', 500000.00, '2023-02-15', '2023-08-15', 2, 'In Progress'),
(3, '员工技能提升计划', 200000.00, '2023-03-01', '2023-12-31', 3, 'Planning'),
(4, '财务系统云迁移', 350000.00, '2023-04-01', NULL, 4, 'In Progress'),
(5, '移动端应用优化', 300000.00, '2023-05-15', '2023-11-30', 1, 'Planning');
-- 员工项目关联
INSERT INTO emp_projects VALUES
(1, 1, '技术负责人', '2023-01-05', 30),
(2, 1, '开发工程师', '2023-01-10', 40),
(1, 5, '架构师', '2023-05-10', 20),
(3, 2, '市场总监', '2023-02-10', 25),
(4, 2, '市场专员', '2023-02-15', 35),
(5, 3, '培训经理', '2023-03-01', 30),
(6, 3, '培训助理', '2023-03-05', 20),
(7, 4, '项目经理', '2023-04-01', 40);
AI写代码sql
三、子查询深度解析
3.1 子查询分类与语法
3.1.1 按子查询位置分类
-
WHERE子句子查询
sqlSELECT emp_name, salary FROM employees WHERE salary > (SELECT AVG(salary) FROM employees); AI写代码sql
-
FROM子句子查询(派生表)
vbnetSELECT d.dept_name, avg_sal.avg_salary FROM departments d JOIN (SELECT dept_id, AVG(salary) as avg_salary FROM employees GROUP BY dept_id) avg_sal ON d.dept_id = avg_sal.dept_id; AI写代码sql
-
SELECT子句子查询
sqlSELECT emp_name, salary, (SELECT AVG(salary) FROM employees) as company_avg FROM employees; AI写代码sql
-
HAVING子句子查询
sqlSELECT dept_id, AVG(salary) as avg_salary FROM employees GROUP BY dept_id HAVING AVG(salary) > (SELECT AVG(salary) FROM employees); AI写代码sql
3.1.2 按子查询相关性分类
-
非相关子查询
sqlSELECT emp_name FROM employees WHERE dept_id IN (SELECT dept_id FROM departments WHERE location = '北京总部'); AI写代码sql
-
相关子查询
sqlSELECT e1.emp_name, e1.salary FROM employees e1 WHERE salary > (SELECT AVG(salary) FROM employees e2 WHERE e2.dept_id = e1.dept_id); AI写代码sql
3.2 子查询操作符详解
-
IN操作符
sqlSELECT emp_name FROM employees WHERE dept_id IN (SELECT dept_id FROM departments WHERE budget > 1000000); AI写代码sql
-
NOT IN操作符
sqlSELECT emp_name FROM employees WHERE emp_id NOT IN (SELECT DISTINCT emp_id FROM emp_projects); AI写代码sql
-
EXISTS操作符
sqlSELECT d.dept_name FROM departments d WHERE EXISTS (SELECT 1 FROM projects p WHERE p.dept_id = d.dept_id AND p.status = 'In Progress'); AI写代码sql
-
比较运算符子查询
sqlSELECT emp_name, salary FROM employees WHERE salary >= (SELECT MAX(salary) * 0.8 FROM employees); AI写代码sql
3.3 子查询性能优化
-
使用JOIN替代子查询
sql-- 不推荐 SELECT emp_name FROM employees WHERE dept_id IN (SELECT dept_id FROM departments WHERE location = '北京总部'); -- 推荐 SELECT e.emp_name FROM employees e JOIN departments d ON e.dept_id = d.dept_id WHERE d.location = '北京总部'; AI写代码sql
-
使用EXISTS替代IN
sql-- 当子查询结果集大时更高效 SELECT d.dept_name FROM departments d WHERE EXISTS (SELECT 1 FROM projects p WHERE p.dept_id = d.dept_id); AI写代码sql
-
限制子查询返回的列数
sql-- 只选择必要的列 SELECT emp_name FROM employees WHERE dept_id IN (SELECT dept_id FROM departments); -- 而不是 SELECT * AI写代码sql
四、连接查询全面讲解
4.1 连接类型详解
4.1.1 内连接(INNER JOIN)
sql
-- 基本内连接
SELECT e.emp_name, d.dept_name
FROM employees e
INNER JOIN departments d ON e.dept_id = d.dept_id;
-- 带条件的内连接
SELECT e.emp_name, p.project_name, ep.role
FROM employees e
INNER JOIN emp_projects ep ON e.emp_id = ep.emp_id
INNER JOIN projects p ON ep.project_id = p.project_id
WHERE p.status = 'In Progress';
AI写代码sql
4.1.2 外连接(OUTER JOIN)
-
左外连接(LEFT JOIN)
sql-- 查询所有部门及其员工(包括没有员工的部门) SELECT d.dept_name, e.emp_name FROM departments d LEFT JOIN employees e ON d.dept_id = e.dept_id; AI写代码sql
-
右外连接(RIGHT JOIN)
sql-- 查询所有员工及其部门(包括没有部门的员工) SELECT e.emp_name, d.dept_name FROM employees e RIGHT JOIN departments d ON e.dept_id = d.dept_id; AI写代码sql
-
全外连接(FULL OUTER JOIN) - MySQL通过UNION实现
sql-- 查询所有员工和所有部门的组合 SELECT e.emp_name, d.dept_name FROM employees e LEFT JOIN departments d ON e.dept_id = d.dept_id UNION SELECT e.emp_name, d.dept_name FROM employees e RIGHT JOIN departments d ON e.dept_id = d.dept_id WHERE e.emp_id IS NULL; AI写代码sql
4.1.3 交叉连接(CROSS JOIN)
sql
-- 生成员工和项目的所有可能组合
SELECT e.emp_name, p.project_name
FROM employees e
CROSS JOIN projects p;
AI写代码sql

4.1.4 自连接(SELF JOIN)
sql
-- 查询员工及其经理信息
SELECT e.emp_name AS employee, m.emp_name AS manager
FROM employees e
LEFT JOIN employees m ON e.manager_id = m.emp_id;
AI写代码sql

4.2 连接查询优化策略
下面关于索引和视图的知识后面还会详细讲解
-
确保连接条件有索引
sqlALTER TABLE employees ADD INDEX idx_dept_id (dept_id); ALTER TABLE emp_projects ADD INDEX idx_emp_id (emp_id); ALTER TABLE emp_projects ADD INDEX idx_project_id (project_id); AI写代码sql
-
选择适当的连接顺序
sql-- 小表驱动大表原则 SELECT /*+ JOIN_ORDER(d, e) */ d.dept_name, e.emp_name FROM departments d -- 假设部门表比员工表小 JOIN employees e ON d.dept_id = e.dept_id; AI写代码sql
-
使用STRAIGHT_JOIN强制连接顺序
vbnetSELECT STRAIGHT_JOIN d.dept_name, COUNT(e.emp_id) as emp_count FROM departments d JOIN employees e ON d.dept_id = e.dept_id GROUP BY d.dept_id; AI写代码sql
五、UNION查询高级应用
5.1 UNION基础用法
sql
-- 合并员工和部门名称
SELECT emp_name AS name, 'Employee' AS type FROM employees
UNION
SELECT dept_name, 'Department' FROM departments
ORDER BY type, name;
AI写代码sql

5.2 UNION ALL与UNION的区别
sql
-- UNION会去重,UNION ALL不会
SELECT dept_id FROM employees WHERE salary > 20000
UNION
SELECT dept_id FROM departments WHERE budget > 1500000;
-- 使用UNION ALL提高性能(当确定不需要去重时)
SELECT emp_name FROM employees WHERE dept_id = 1
UNION ALL
SELECT emp_name FROM employees WHERE salary > 18000;
AI写代码sql

5.3 复杂UNION查询示例
sql
-- 按类型统计人数和预算
SELECT 'Department' AS category, COUNT(*) AS count, SUM(budget) AS total_budget
FROM departments
UNION
SELECT 'Employee' AS category, COUNT(*) AS count, SUM(salary) AS total_salary
FROM employees
UNION
SELECT 'Project' AS category, COUNT(*) AS count, SUM(budget) AS total_budget
FROM projects;
AI写代码sql

六、派生表与CTE高级用法
6.1 派生表(MySQL 5.7+)
sql
-- 计算各部门薪资统计信息
SELECT d.dept_name,
stats.emp_count,
stats.avg_salary,
stats.max_salary
FROM departments d
JOIN (
SELECT dept_id,
COUNT(*) as emp_count,
AVG(salary) as avg_salary,
MAX(salary) as max_salary
FROM employees
GROUP BY dept_id
) stats ON d.dept_id = stats.dept_id;
AI写代码sql

6.2 公用表表达式(CTE, MySQL 8.0+)
6.2.1 基本CTE
sql
-- 查询参与项目的员工信息
WITH project_emps AS (
SELECT DISTINCT emp_id FROM emp_projects
)
SELECT e.emp_name, e.salary
FROM employees e
JOIN project_emps pe ON e.emp_id = pe.emp_id;
AI写代码sql

6.2.2 递归CTE
sql
-- 组织结构层级查询
WITH RECURSIVE org_hierarchy AS (
-- 基础查询:找出所有没有经理的员工(顶层管理者)
SELECT emp_id, emp_name, manager_id, 1 AS level
FROM employees
WHERE manager_id IS NULL
UNION ALL
-- 递归查询:找出每个员工的下属
SELECT e.emp_id, e.emp_name, e.manager_id, oh.level + 1
FROM employees e
JOIN org_hierarchy oh ON e.manager_id = oh.emp_id
)
SELECT emp_id, emp_name, level
FROM org_hierarchy
ORDER BY level, emp_name;
AI写代码sql
七、复合查询实战案例
7.1 多层级数据分析
sql
-- 分析各部门项目参与情况
WITH dept_stats AS (
SELECT d.dept_id, d.dept_name,
COUNT(DISTINCT e.emp_id) as total_emps,
COUNT(DISTINCT ep.emp_id) as project_emps,
COUNT(DISTINCT p.project_id) as project_count
FROM departments d
LEFT JOIN employees e ON d.dept_id = e.dept_id
LEFT JOIN emp_projects ep ON e.emp_id = ep.emp_id
LEFT JOIN projects p ON d.dept_id = p.dept_id
GROUP BY d.dept_id, d.dept_name
)
SELECT dept_name,
total_emps,
project_emps,
project_count,
CONCAT(ROUND(project_emps/total_emps*100, 2), '%') AS participation_rate
FROM dept_stats
ORDER BY participation_rate DESC;
AI写代码sql
7.2 复杂业务逻辑实现
vbnet
-- 找出每个部门薪资高于部门平均且参与项目的员工
WITH dept_avg_salary AS (
SELECT dept_id, AVG(salary) as avg_salary
FROM employees
GROUP BY dept_id
),
project_employees AS (
SELECT DISTINCT emp_id
FROM emp_projects
)
SELECT e.emp_name, e.salary, d.dept_name, das.avg_salary
FROM employees e
JOIN departments d ON e.dept_id = d.dept_id
JOIN dept_avg_salary das ON e.dept_id = das.dept_id
JOIN project_employees pe ON e.emp_id = pe.emp_id
WHERE e.salary > das.avg_salary
ORDER BY e.dept_id, e.salary DESC;
AI写代码sql
八、性能优化与最佳实践
8.1 复合查询性能优化
-
EXPLAIN分析工具
sqlEXPLAIN SELECT e.emp_name, d.dept_name FROM employees e JOIN departments d ON e.dept_id = d.dept_id WHERE e.salary > 15000; AI写代码sql
-
索引优化建议
- 为所有连接条件创建索引
- 为WHERE子句中的条件列创建索引
- 考虑复合索引的顺序
-
查询重写技巧
sql-- 不推荐:使用HAVING过滤分组前数据 SELECT dept_id, AVG(salary) as avg_salary FROM employees GROUP BY dept_id HAVING dept_id IN (1, 2, 3); -- 推荐:在WHERE子句中提前过滤 SELECT dept_id, AVG(salary) as avg_salary FROM employees WHERE dept_id IN (1, 2, 3) GROUP BY dept_id; AI写代码sql
8.2 复合查询最佳实践
-
保持查询简洁:避免过度复杂的嵌套
-
合理使用注释:解释复杂查询的逻辑
-
分步构建查询:先测试子查询再组合
-
考虑使用视图:对常用复杂查询创建视图
sqlCREATE VIEW dept_project_stats AS SELECT d.dept_id, d.dept_name, COUNT(DISTINCT e.emp_id) as emp_count, COUNT(DISTINCT p.project_id) as project_count FROM departments d LEFT JOIN employees e ON d.dept_id = e.dept_id LEFT JOIN projects p ON d.dept_id = p.dept_id GROUP BY d.dept_id, d.dept_name; AI写代码sql
九、常见问题与解决方案
9.1 性能问题排查
问题:复合查询执行缓慢
解决方案:
- 使用EXPLAIN分析执行计划
- 检查是否使用了适当的索引
- 考虑将复杂查询拆分为多个简单查询
- 评估是否可以使用临时表存储中间结果
9.2 结果不符合预期
问题:查询返回的行数多于或少于预期
解决方案:
- 检查连接条件是否正确
- 确认使用正确的JOIN类型(INNER/LEFT/RIGHT)
- 验证WHERE条件逻辑
- 检查NULL值的处理方式
9.3 语法错误处理
常见错误:
- 子查询返回多行但使用了比较运算符
- 在GROUP BY或HAVING中引用了不存在的列
- UNION查询的列数或类型不匹配
解决方案:
sql
-- 错误示例:子查询返回多行
SELECT emp_name FROM employees
WHERE salary = (SELECT salary FROM employees WHERE dept_id = 1);
-- 正确修改:
SELECT emp_name FROM employees
WHERE salary IN (SELECT salary FROM employees WHERE dept_id = 1);
AI写代码sql
十、总结与进阶学习建议
10.1 复合查询核心要点总结
- 子查询适合解决分步查询问题,但要注意性能
- 连接查询是处理表关系的强大工具
- UNION提供了垂直合并结果集的能力
- CTE提高了复杂查询的可读性和可维护性
10.2 进阶学习建议
- 深入学习执行计划:掌握EXPLAIN输出解读
- 了解查询优化器原理:学习MySQL如何优化查询
- 研究分区表查询:大数据量下的查询优化
- 学习窗口函数:MySQL 8.0+的高级分析功能
以上就是关于MySQL查询中的所有相关知识点,除了前面常用的外,后面的有些时候并不一定能用到,但都是有必要掌握的,由于篇幅原因,有些问题并不能全面刨析到,建议大家看到不理解的地方可以再去找一些教学视频看一下