SparkX结合Ollama搭建本地知识库

Ollama是一个开源的本地大语言模型(LLM)运行框架,专注于简化和优化大型语言模型在个人设备上的部署与管理,支持主流模型的快速运行与集成。借助Ollama 强大的功能我们无需关注本地模型部署的各种复杂的依赖。如何在SparkX中使用Ollama呢?

开源地址:
github.com/nick-bai/Sp...
gitee.com/shop-sparke...

本文以macos 环境为例,其他环境除了装Ollama略有不同,其余的均一致

安装 ollama

1、下载Ollama

打开 ollama的官网 ollama.com/

点击下载,根据自己系统选择对应的版本。

正常情况下,系统会自动检测当前的操作系统,默认选择对应的版本。点击下载即可。

2、安装ollama

没有啥特殊的配置的话,一路下一步。

3、验证是否安装完毕

打开命令行输入

复制代码
ollama -v

出现如下的画面,表示安装完成。

在SparkX中使用Ollama

1、语言模型

我们选择一个自己系统可以部署的模型,打开 Ollama官网,点击Models
ollama.com/search

我们选择一个 qwen3 模型

点击进去,这里我 选择 1.7b 模型,复制拉取命令

arduino 复制代码
ollama run qwen3:1.7b

打开命令行执行,等待模型拉去完成。

拉去完毕之后,模型会自动启动。我们输入 你好,能看到模型正常的回复了。

接下来我们打开 SparkX的模型管理,填写 Ollama 的可用模型 qwen3:1.7b

保存提交。然后在应用中选择我们设置的 模型

此时,就可以在应用中使用 Ollama 中的 qwen3 模型了

2、向量模型

打开 Ollama 官网,选择 embedding 模型

这里我们选择 一个,以 bg3-m3 为例子,复制拉去命令

复制代码
ollama pull bge-m3

拉去完毕之后,我们打开 SparkX 的向量模型配置,输入可用模型为 bge-m3

知识库就可以配置 bge-m3 模型了

传入文本,选择向量化

等待完成向量化

3、重排模型

打开 Ollama 官网,选择 搜索 rerank 模型

我们选择拉去 bge-reranker-v2-m3,复制 拉去命令

bash 复制代码
ollama pull linux6200/bge-reranker-v2-m3

打开 SparkX 的重排模型,输入重排名称

在应用中就可以选择这个重排模型了

相关推荐
想用offer打牌4 小时前
MCP (Model Context Protocol) 技术理解 - 第二篇
后端·aigc·mcp
KYGALYX5 小时前
服务异步通信
开发语言·后端·微服务·ruby
掘了6 小时前
「2025 年终总结」在所有失去的人中,我最怀念我自己
前端·后端·年终总结
爬山算法6 小时前
Hibernate(90)如何在故障注入测试中使用Hibernate?
java·后端·hibernate
Moment6 小时前
富文本编辑器在 AI 时代为什么这么受欢迎
前端·javascript·后端
Cobyte7 小时前
AI全栈实战:使用 Python+LangChain+Vue3 构建一个 LLM 聊天应用
前端·后端·aigc
程序员侠客行8 小时前
Mybatis连接池实现及池化模式
java·后端·架构·mybatis
Honmaple8 小时前
QMD (Quarto Markdown) 搭建与使用指南
后端
PP东9 小时前
Flowable学习(二)——Flowable概念学习
java·后端·学习·flowable
invicinble9 小时前
springboot的核心实现机制原理
java·spring boot·后端