SparkX结合Ollama搭建本地知识库

Ollama是一个开源的本地大语言模型(LLM)运行框架,专注于简化和优化大型语言模型在个人设备上的部署与管理,支持主流模型的快速运行与集成。借助Ollama 强大的功能我们无需关注本地模型部署的各种复杂的依赖。如何在SparkX中使用Ollama呢?

开源地址:
github.com/nick-bai/Sp...
gitee.com/shop-sparke...

本文以macos 环境为例,其他环境除了装Ollama略有不同,其余的均一致

安装 ollama

1、下载Ollama

打开 ollama的官网 ollama.com/

点击下载,根据自己系统选择对应的版本。

正常情况下,系统会自动检测当前的操作系统,默认选择对应的版本。点击下载即可。

2、安装ollama

没有啥特殊的配置的话,一路下一步。

3、验证是否安装完毕

打开命令行输入

复制代码
ollama -v

出现如下的画面,表示安装完成。

在SparkX中使用Ollama

1、语言模型

我们选择一个自己系统可以部署的模型,打开 Ollama官网,点击Models
ollama.com/search

我们选择一个 qwen3 模型

点击进去,这里我 选择 1.7b 模型,复制拉取命令

arduino 复制代码
ollama run qwen3:1.7b

打开命令行执行,等待模型拉去完成。

拉去完毕之后,模型会自动启动。我们输入 你好,能看到模型正常的回复了。

接下来我们打开 SparkX的模型管理,填写 Ollama 的可用模型 qwen3:1.7b

保存提交。然后在应用中选择我们设置的 模型

此时,就可以在应用中使用 Ollama 中的 qwen3 模型了

2、向量模型

打开 Ollama 官网,选择 embedding 模型

这里我们选择 一个,以 bg3-m3 为例子,复制拉去命令

复制代码
ollama pull bge-m3

拉去完毕之后,我们打开 SparkX 的向量模型配置,输入可用模型为 bge-m3

知识库就可以配置 bge-m3 模型了

传入文本,选择向量化

等待完成向量化

3、重排模型

打开 Ollama 官网,选择 搜索 rerank 模型

我们选择拉去 bge-reranker-v2-m3,复制 拉去命令

bash 复制代码
ollama pull linux6200/bge-reranker-v2-m3

打开 SparkX 的重排模型,输入重排名称

在应用中就可以选择这个重排模型了

相关推荐
用户685453759776935 分钟前
🔥 服务熔断降级:微服务的"保险丝"大作战!
后端
Tech有道35 分钟前
拼多多「面试官问我:LRU 和 LFU 你选谁?」我:看场景啊哥!😂
后端
用户685453759776935 分钟前
🎬 开场:RPC框架的前世今生
后端
王中阳Go背后的男人40 分钟前
Docker磁盘满了?这样清理高效又安全
后端·docker
用户685453759776941 分钟前
🎛️ 分布式配置中心:让配置管理不再是噩梦!
后端
CodeFans41 分钟前
Spring 浅析
后端
李广坤43 分钟前
Filter(过滤器)、Interceptor(拦截器) 和 AOP(面向切面编程)
后端
oak隔壁找我44 分钟前
反向代理详解
后端·架构
YUELEI1181 小时前
Springboot WebSocket
spring boot·后端·websocket
小蒜学长1 小时前
springboot基于JAVA的二手书籍交易系统的设计与实现(代码+数据库+LW)
java·数据库·spring boot·后端