10 卷积神经网络

复制代码
#----导包
import torch
from torch import nn
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim

#----准备数据集
batch_size = 64
transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.1307,),(0.3081,))])


#----下载和加载train和test
trainset = datasets.MNIST(root='./data', train=True, transform=transform, download=False)
train_loader = DataLoader(trainset, batch_size=batch_size, shuffle=True)

testset = datasets.MNIST(root='./data', train=False, transform=transform, download=False)
test_loader = DataLoader(trainset, batch_size=batch_size, shuffle=False)

#-----搭建卷积神经网络
class Net(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 10, 5)
        self.conv2 = nn.Conv2d(10, 20, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.fc1 = nn.Linear(320, 10)

    def forward(self, x):
        x = F.relu(self.pool(self.conv1(x)))
        x = F.relu(self.pool(self.conv2(x)))
        x = x.view(x.size(0), -1) #可以改成x = x.view(-1, 320)
        x = self.fc1(x)
        return x

model = Net()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") #将模型迁移到GPU
model.to(device)#将模型迁移到GPU

criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)

def train(epoch):
    running_loss = 0.0
    for batch_idx, (inputs, targets) in enumerate(train_loader):
        inputs, targets = inputs.to(device), targets.to(device)
        optimizer.zero_grad()

        outputs = model(inputs)
        loss = criterion(outputs, targets)
        loss.backward()
        optimizer.step()
        running_loss += loss.item()
        if batch_idx % 300 == 299:
            print('[%d, %5d] loss: %.3f' %(epoch + 1, batch_idx + 1, running_loss / 300))
            running_loss = 0.0

def test(epoch):
    correct = 0
    total = 0
    with torch.no_grad():
        for batch_idx, (inputs, targets) in enumerate(test_loader):
            inputs, targets = inputs.to(device), targets.to(device)
            outputs = model(inputs)
            _, predicted = torch.max(outputs.data, 1)
            total += targets.size(0)
            correct += predicted.eq(targets).sum().item()
    accuracy = 100 * correct / total
    print('Accuracy of the network on the 10000 test images: %f ' % accuracy)

训练和测试结果:

相关推荐
技术小黑1 分钟前
Transformer系列 | Pytorch复现Transformer
pytorch·深度学习·transformer
SunnyDays101126 分钟前
Python 轻松实现替换或修改 PDF 文字
python·替换pdf文字·修改pdf·修改pdf文字
Just_Paranoid1 小时前
【Settings】恢复出厂设置密码校验
android·python·settings·sha256·hmac-sha256
DogDaoDao2 小时前
神经网络稀疏化设计构架方法和原理深度解析
人工智能·pytorch·深度学习·神经网络·大模型·剪枝·网络稀疏
西猫雷婶2 小时前
pytorch基本运算-Python控制流梯度运算
人工智能·pytorch·python·深度学习·神经网络·机器学习
子午3 小时前
Python的uv包管理工具使用
开发语言·python·uv
java1234_小锋3 小时前
Scikit-learn Python机器学习 - 分类算法 - 朴素贝叶斯
python·机器学习·scikit-learn
凡梦千华3 小时前
Django时区感知
后端·python·django
寒月霜华3 小时前
机器学习-模型验证
人工智能·深度学习·机器学习
程序猿 小项目大搞头4 小时前
即梦批量生成图片软件使用运营大管家-即梦图片批量生成器
python