10 卷积神经网络

复制代码
#----导包
import torch
from torch import nn
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim

#----准备数据集
batch_size = 64
transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.1307,),(0.3081,))])


#----下载和加载train和test
trainset = datasets.MNIST(root='./data', train=True, transform=transform, download=False)
train_loader = DataLoader(trainset, batch_size=batch_size, shuffle=True)

testset = datasets.MNIST(root='./data', train=False, transform=transform, download=False)
test_loader = DataLoader(trainset, batch_size=batch_size, shuffle=False)

#-----搭建卷积神经网络
class Net(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 10, 5)
        self.conv2 = nn.Conv2d(10, 20, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.fc1 = nn.Linear(320, 10)

    def forward(self, x):
        x = F.relu(self.pool(self.conv1(x)))
        x = F.relu(self.pool(self.conv2(x)))
        x = x.view(x.size(0), -1) #可以改成x = x.view(-1, 320)
        x = self.fc1(x)
        return x

model = Net()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") #将模型迁移到GPU
model.to(device)#将模型迁移到GPU

criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)

def train(epoch):
    running_loss = 0.0
    for batch_idx, (inputs, targets) in enumerate(train_loader):
        inputs, targets = inputs.to(device), targets.to(device)
        optimizer.zero_grad()

        outputs = model(inputs)
        loss = criterion(outputs, targets)
        loss.backward()
        optimizer.step()
        running_loss += loss.item()
        if batch_idx % 300 == 299:
            print('[%d, %5d] loss: %.3f' %(epoch + 1, batch_idx + 1, running_loss / 300))
            running_loss = 0.0

def test(epoch):
    correct = 0
    total = 0
    with torch.no_grad():
        for batch_idx, (inputs, targets) in enumerate(test_loader):
            inputs, targets = inputs.to(device), targets.to(device)
            outputs = model(inputs)
            _, predicted = torch.max(outputs.data, 1)
            total += targets.size(0)
            correct += predicted.eq(targets).sum().item()
    accuracy = 100 * correct / total
    print('Accuracy of the network on the 10000 test images: %f ' % accuracy)

训练和测试结果:

相关推荐
天天进步201533 分钟前
Python游戏开发引擎设计与实现
开发语言·python·pygame
不会学习的小白O^O1 小时前
神经网络----卷积层(Conv2D)
人工智能·深度学习·神经网络
数据狐(DataFox)1 小时前
CTE公用表表达式的可读性与性能优化
经验分享·python·sql
蹦蹦跳跳真可爱5891 小时前
Python----MCP(MCP 简介、uv工具、创建MCP流程、MCP客户端接入Qwen、MCP客户端接入vLLM)
开发语言·人工智能·python·语言模型
No0d1es1 小时前
第13届蓝桥杯Python青少组中/高级组选拔赛(STEMA)2022年1月22日真题
python·青少年编程·蓝桥杯·选拔赛
MediaTea1 小时前
Python 库手册:getopt Unix 风格参数解析模块
服务器·开发语言·python·unix
王尼莫啊2 小时前
【立体标定】圆形标定板标定python实现
开发语言·python·opencv
Se_ren_di_pity2 小时前
CS231n2017-Lecture9经典CNN架构笔记
人工智能·笔记·cnn
非极限码农2 小时前
基于Deepseek的语言润色助手API实现与部署指南
python·微服务·自然语言处理