机器学习(13):逻辑回归

逻辑回归的输入是线性回归的输出

线性回归的输出是连续值(如 h(w)=w1​x1​+w2​x2​+...+b),而 sigmoid 函数可以将这个连续输出映射到 [0, 1] 区间,使其具备概率含义。

代码

python 复制代码
import numpy as np
import matplotlib.pyplot as plt

x = np.linspace(-10, 10, 100)
y = 1 / (1 + np.exp(-x))
plt.plot(x, y)
plt.show()

激活函数sigmoid

python 复制代码
from sklearn.linear_model import LogisticRegression
import pandas as pd 
from sklearn.feature_extraction import DictVectorizer
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
data = pd.read_csv("./src/titanic/titanic.csv")
print(data.columns)

y = data["survived"].values
x = data[["pclass", "age", "sex"]]
# x[["age"]].fillna(x[["age"]].mean(), inplace=True)
# print(y.shape,type(y))
# print(x.head())
x["age"].fillna(x["age"].mean(), inplace=True)#对空值进行处理
x= x.to_dict(orient="records")

# print(x[:5])
dicter = DictVectorizer(sparse=False)
x=dicter.fit_transform(x)
print(dicter.get_feature_names_out())
print(x[:5])

scaler = StandardScaler()
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.2,random_state=42)  
x_train = scaler.fit_transform(x_train)  
x_test = scaler.transform(x_test)

model = LogisticRegression(max_iter=1000,fit_intercept=True)
model.fit(x_train,y_train)

score = model.score(x_test,y_test)
print(score)
python 复制代码
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_iris
x,y = load_iris(return_X_y=True)
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.2,random_state=42)

model = LogisticRegression(max_iter=5000)
model.fit(x_train,y_train)

score = model.score(x_test,y_test)
print(score)
x_new=[[5,5,4,2],
       [1,1,4,3]]
y_predict = model.predict(x_new)
y_por = model.predict_proba(x_new)
print(y_predict)
print(y_por)
print(model.coef_)
print(model.intercept_)
相关推荐
悠哉悠哉愿意18 分钟前
【机器学习学习笔记】线性回归实现与应用
笔记·学习·机器学习
Ronin-Lotus25 分钟前
深度学习篇---SENet网络结构
人工智能·深度学习
n12352351 小时前
AI IDE+AI 辅助编程,真能让程序员 “告别 996” 吗?
ide·人工智能
漠缠1 小时前
Android AI客户端开发(语音与大模型部署)面试题大全
android·人工智能
连合机器人1 小时前
当有鹿机器人读懂城市呼吸的韵律——具身智能如何重构户外清洁生态
人工智能·ai·设备租赁·连合直租·智能清洁专家·有鹿巡扫机器人
良策金宝AI1 小时前
当电力设计遇上AI:良策金宝AI如何重构行业效率边界?
人工智能·光伏·电力工程
数科星球1 小时前
AI重构出海营销:HeadAI如何用“滴滴模式”破解红人营销效率困局?
大数据·人工智能
THMAIL2 小时前
机器学习从入门到精通 - 机器学习调参终极手册:网格搜索、贝叶斯优化实战
人工智能·python·算法·机器学习·支持向量机·数据挖掘·逻辑回归
摆烂工程师2 小时前
Anthropic 停止 Claude 提供给多数股权由中国资本持有的集团或其子公司使用,会给国内的AI生态带来什么影响?
人工智能·程序员·claude
ai绘画-安安妮3 小时前
Agentic AI 架构全解析:到底什么是Agentic AI?它是如何工作的
人工智能·ai·语言模型·自然语言处理·程序员·大模型·转行