【Cute学学习笔记】print_tensor打印error

经过实践,cute中使用print_tensor打印一个tensor,如果类型是half是会直接编译不过的:

cpp 复制代码
#include <cuda.h>
#include <stdlib.h>
#include <cute/tensor.hpp>

/*
    cute中的Tensor更多的是对Tensor进行分解和组合等操作,而这些操作多是对Layout的变换(只是逻辑层面的数据组织形式),底层的数据实体一般不变更。
    Tensor = Layout + storage
*/

// nvcc tensor.cu -arch=sm_89 -std=c++17 -I ../cutlass/include -I ../cutlass/tools/util/include --expt-relaxed-constexpr -cudart shared --cudadevrt none  -DDEBUG

using namespace cute;
using namespace std;

#define PRINT(name, content) \
    print(name);             \
    print(" : ");            \
    print(content);          \
    print("\n");

#define PRINTTENSOR(name, content) \
    print(name);                   \
    print(" : ");                  \
    print_tensor(content);         \
    print("\n");

template<typename T>
__global__ void handle_global_tensor(T *pointer)
{
    auto gshape = make_shape(Int<4>{}, Int<6>{});
    auto gstride = make_stride(Int<6>{}, Int<1>{});
    auto gtensor = make_tensor(make_gmem_ptr(pointer), make_layout(gshape, gstride));
    PRINTTENSOR("global tensor", gtensor);
}

int main()
{
    // register tensor
    // handle_regiser_tensor<<<1, 1>>>();

    // global memory tensor

    using T = half;

    T *pointer;
    int size = 4 * 6;
    cudaMalloc(&pointer, size * sizeof(T));
    T *cpointer = (T *)malloc(size * sizeof(T));
    for (int i = 0; i < size; i++)
    {
        cpointer[i] = (T)i;
    }
    cudaMemcpy(pointer, cpointer, size * sizeof(int), cudaMemcpyHostToDevice);
    handle_global_tensor<T><<<1, 1>>>(pointer);
    cudaDeviceSynchronize();
    return 0;
}

如果类型换成int或者float,是可以成功打印的:

cpp 复制代码
#include <cuda.h>
#include <stdlib.h>
#include <cute/tensor.hpp>

/*
    cute中的Tensor更多的是对Tensor进行分解和组合等操作,而这些操作多是对Layout的变换(只是逻辑层面的数据组织形式),底层的数据实体一般不变更。
    Tensor = Layout + storage
*/

// nvcc tensor.cu -arch=sm_89 -std=c++17 -I ../cutlass/include -I ../cutlass/tools/util/include --expt-relaxed-constexpr -cudart shared --cudadevrt none  -DDEBUG

using namespace cute;
using namespace std;

#define PRINT(name, content) \
    print(name);             \
    print(" : ");            \
    print(content);          \
    print("\n");

#define PRINTTENSOR(name, content) \
    print(name);                   \
    print(" : ");                  \
    print_tensor(content);         \
    print("\n");

template<typename T>
__global__ void handle_global_tensor(T *pointer)
{
    auto gshape = make_shape(Int<4>{}, Int<6>{});
    auto gstride = make_stride(Int<6>{}, Int<1>{});
    auto gtensor = make_tensor(make_gmem_ptr(pointer), make_layout(gshape, gstride));
    PRINTTENSOR("global tensor", gtensor);
}

int main()
{
    using T = float;

    T *pointer;
    int size = 4 * 6;
    cudaMalloc(&pointer, size * sizeof(T));
    T *cpointer = (T *)malloc(size * sizeof(T));
    for (int i = 0; i < size; i++)
    {
        cpointer[i] = (T)i;
    }
    cudaMemcpy(pointer, cpointer, size * sizeof(int), cudaMemcpyHostToDevice);
    handle_global_tensor<T><<<1, 1>>>(pointer);
    cudaDeviceSynchronize();
    return 0;
}

惊喜发现,不能直接用half,得用cute::half_t,这样的是可以打印的

cpp 复制代码
#include <cuda.h>
#include <stdlib.h>
#include <cute/tensor.hpp>

/*
    cute中的Tensor更多的是对Tensor进行分解和组合等操作,而这些操作多是对Layout的变换(只是逻辑层面的数据组织形式),底层的数据实体一般不变更。
    Tensor = Layout + storage
*/

// nvcc tensor.cu -arch=sm_89 -std=c++17 -I ../cutlass/include -I ../cutlass/tools/util/include --expt-relaxed-constexpr -cudart shared --cudadevrt none  -DDEBUG

using namespace cute;
using namespace std;

#define PRINT(name, content) \
    print(name);             \
    print(" : ");            \
    print(content);          \
    print("\n");

#define PRINTTENSOR(name, content) \
    print(name);                   \
    print(" : ");                  \
    print_tensor(content);         \
    print("\n");

template<typename T>
__global__ void handle_global_tensor(T *pointer)
{
    auto gshape = make_shape(Int<4>{}, Int<6>{});
    auto gstride = make_stride(Int<6>{}, Int<1>{});
    auto gtensor = make_tensor(make_gmem_ptr(pointer), make_layout(gshape, gstride));
    PRINTTENSOR("global tensor", gtensor);
}

int main()
{
    using T = cute::half_t;
    // using T = half;

    T *pointer;
    int size = 4 * 6;
    cudaMalloc(&pointer, size * sizeof(T));
    T *cpointer = (T *)malloc(size * sizeof(T));
    for (int i = 0; i < size; i++)
    {
        cpointer[i] = 1;
    }
    cudaMemcpy(pointer, cpointer, size * sizeof(T), cudaMemcpyHostToDevice);
    handle_global_tensor<T><<<1, 1>>>(pointer);
    cudaDeviceSynchronize();
    return 0;
}
相关推荐
sz-lcw5 小时前
MySQL知识笔记
笔记·mysql·adb
古译汉书6 小时前
嵌入式铁头山羊STM32-各章节详细笔记-查阅传送门
数据结构·笔记·stm32·单片机·嵌入式硬件·个人开发
2301_800050999 小时前
DNS 服务器
linux·运维·笔记
汇能感知9 小时前
光谱相机的未来趋势
经验分享·笔记·科技
风已经起了12 小时前
FPGA学习笔记——图像处理之对比度调节(直方图均衡化)
图像处理·笔记·学习·fpga开发·fpga
go_bai12 小时前
Linux--常见工具
linux·开发语言·经验分享·笔记·vim·学习方法
sjh210014 小时前
【学习笔记】20年前的微芯an1078foc技术,smo滑模位置估计,反电动势波形还不错,为何位置估计反而超前了呢?
笔记·学习
航Hang*15 小时前
Kurt-Blender零基础教程:第3章:材质篇——第1节:材质基础~原理化BSDF,添加有纹理材质与用蒙版做纹理叠加
笔记·blender·材质·建模
泽虞16 小时前
《C++程序设计》笔记p4
linux·开发语言·c++·笔记·算法
峰顶听歌的鲸鱼17 小时前
29.Linux防火墙管理
linux·运维·网络·笔记·学习方法